from 01.01.2015 until now
Nizhniy Novgorod, Nizhny Novgorod, Russian Federation
Nizhniy Novgorod, Nizhny Novgorod, Russian Federation
UDK 61 Медицина. Охрана здоровья
GRNTI 76.29 Клиническая медицина
OKSO 31.06.2001 Клиническая медицина
BBK 54 Клиническая медицина
BISAC MED016070 Dentistry / Prosthodontics
Subject. Modern digital technologies make it possible to automate the process of creating bridges to a large extent. First, digital images of the patient's dentition are obtained, then the future prosthesis is virtually modeled and manufactured using a subtractive method using milling and grinding machines or an additive method using a 3D printer. For clinical evaluation of the quality of orthopedic fixed structures made using digital methods, it is necessary to evaluate their dimensional accuracy. The aim is to conduct a comparative assessment of the dimensional accuracy of bridge prosthesis frames made using modern digital technologies and traditional casting method. Methodology. The intraoral laser scanner iTero Cadent, the 3D printer Asiga Max UV, the CAD/CAM system KaVo ARCTICA, the software DentalCAD 2.2 Valletta and the computer program MeshLab were used to study the dimensional accuracy of the bridge frames. The Kruskal-Wallis H-test and the Mann-Whitney U-test were used for statistical analysis of the data obtained. Results. All digital methods of manufacturing bridge frames are distinguishable from the traditional casting method with a significance level of p<0.05 on the basis of dimensional accuracy. The frames of bridge prostheses made by the subtractive method have a higher dimensional accuracy compared to the frames obtained using additive technologies. There were no statistical differences in the dimensional accuracy of milled titanium and zirconium bridge frames. Conclusions. Based on the data obtained, we concluded that the bridge frames made using modern digital technologies have a higher dimensional accuracy (the average value of the median distance of milled zirconium frames is 0,03067 ± 0,001234 mm, milled titanium frames are 0,03032 ± 0,002698 mm, frames made using additive technologies are 0,03686 ± 0,003068 mm) compared to the bridge frames made by the traditional casting method (the average value of the median distance 0,04342 ± 0,003722 mm), with a significance level of p<0,05 (U-Mann-Whitney criterion =0, p=,002).
digital technologies in dentistry, digital impressions, CAD/CAM, intraoral scanner, 3D printing, 3D printer, bridges
1. Alieva S.S. Rezul'taty kraevoy adaptacii monolitnyh koronok iz dioksida cirkoniya. Problemy stomatologii. 2019; 15; 3:133-138. [S.S. Alieva. Results of edge adaptation of monolithic zirconia crowns. Actual problems in dentistry. 2019; 15; 3:133-138. (In Russ.)]. https://www.elibrary.ru/item.asp?id=41212356
2. Vokulova Yu.A. Razrabotka i vnedrenie cifrovyh tehnologiy pri ortopedicheskom lechenii s primeneniem nes'emnyh protezov zubov: avtoref. dis. ... kandidata medicinskih nauk. 14.01.14 / Nizhniy Novgorod, 2017: 22. [Yu.A. Vokulova. Development and implementation of digital technologies in orthopedic treatment with the use of non-removable dentures: autoref. dis. ... candidate of medical Sciences. 14.01.14 / Nizhny Novgorod, 2017: 22. (In Russ.)].
3. Zhulev E.N., Vokulova Yu.A. Izuchenie razmernoy tochnosti vnutrennego prileganiya iskusstvennyh koronok k kul'te opornogo zuba i cifrovyh ottiskov v eksperimente. Kubanskiy nauchnyy medicinskiy vestnik. 2016; 6 (161):58-62. [E.N. Zhulev, Y.A. Vokulova. Study precision internal fit of artificial crowns to the cult of the reference tooth and the dimensional accuracy of digital impressions in the experiment. Kubanskii Nauchnyi Meditsinskii Vestnik. 2016; 6 (161):58-62. (In Russ.)].
4. Zhulev E.N., Vokulova Yu.A. Izuchenie razmernoy tochnosti iskusstvennyh koronok, izgotovlennyh s pomosch'yu CAD/CAM sistemy i 3D printera. Znanstvena misel. 2020; 2; 40: 20-25. [E.N. Zhulev, Y.A. Vokulova. Studying the dimensional accuracy of artificial crowns made using a cad/cam system and a 3D printer. Znanstvena misel. 2020; 2; 40: 20-25.]. https://www.elibrary.ru/item.asp?id=42629846
5. Karyakin N.N., Gorbatov R.O. 3D-pechat' v medicine. Moskva : GEOTAR-Media. 2019: 240. [N.N. Karyakin, R.O. Gorbatov. 3D printing in medicine. Moscow: GEOTAR-Media. 2019: 240. (In Russ.)].
6. Markskors R. Nes'emnye stomatologicheskie restavracii. Moskva : Informacionnoe agentstvo Newdent. 2007:368. [R. Markskors. Non-removable dental restoration. Moscow : Informatsionnoe agentstvo Newdent. 2007:368. (In Russ.)].
7. Mirzoeva M.S. Ispol'zovanie skanirovaniya v ortopedicheskoy stomatologii - Obzor literatury. Problemy stomatologii. 2017; 13; 1:31-34. [M.S. Mirzoeva. Applic atio n of scanning techologies in orthopedic dentistry: a review. Actual problems in dentistry. 2017; 13; 1:31-34. (In Russ.)].
8. Naumovich S.S., Razorenov A.N. SAD/CAM sistemy v stomatologii: sovremennoe sostoyanie i perspektivy razvitiya. Sovremennaya stomatologiya. 2016; 4:2-9. [S.S. Naumovich, A.N. Razorenov. CAD/CAM systems in dentistry: current state and perspectives of development. Modern dentistry. 2016; 4:2-9. (In Russ.)].
9. Lebedenko I.Yu., Arutyunov S.D., Ryahovskiy A.N. Ortopedicheskaya stomatologiya. Nacional'noe rukovodstvo. Moskva : GEOTAR-Media. 2016: 824. [I.Yu. Lebedenko, S.D. Arutyunov, A.N. Ryahovskij. Orthopedic dentistry. National guide. Moscow: GEOTAR-Media. 2016: 824. (In Russ.)].
10. Rozenshtil' S.F. Lend M.R., Fudzhimoto Yu. Ortopedicheskoe lechenie nes'emnymi protezami. Moskva: Medpress. 2010: 940. [S.F. Rozenshtil', M.R. Lend, Yu. Fudzhimoto. Orthopedic treatment with fixed prostheses. Moscow : Medpress. 2010: 940. (In Russ.)].
11. Ryahovskiy A.N. Cifrovaya stomatologiya. Moskva : Avantis. 2010:282. [A.N. Ryahovskij. Digital dentistry. Moscow: Avantis. 2010:282. (In Russ.)].
12. Smit B., Hou L. Koronki i mostovidnye protezy v ortopedicheskoy stomatologii. Per. s angl. Pod obsch. red. E.Yu. Novikova. Moskva : MEDpress-inform. 2010:344. [B. Smit, L. Hou. Crowns and bridges in orthopedic dentistry. Trans. from English. Under the General ed. E. Yu. Novikov. Moscow : Medpress-inform. 2010:344. (In Russ.)].
13. Shustova V.A., Shustov M.A. Primenenie 3D-tehnologiy v ortopedicheskoy stomatologii. Sankt-Peterburg : SpecLit. 2016:159. [V.A. SHustova, M.A. SHustov. Application of 3D technologies in orthopedic dentistry. Saint Petersburg: Spetslit. 2016:159. (In Russ.)].
14. Massironi D., Paschetta R., Romeo D. Tochnost' i estetika. Klinicheskie i zubotehnicheskie etapy protezirovaniya zubov. Moskva : ID Azbuka. 2008:464. [D. Massironi, R. Paschetta, D. Romeo. Precision and dental aesthetics. Clinical and laboratory procedures. Moscow: Azbuka publishing House. 2008:464. (In Russ.)].
15. Fradeani M., Barduchchi D. Esteticheskaya reabilitaciya nes'emnymi ortopedicheskimi konstrukciyami. T.2. Moskva : ID Azbuka. 2010:600. [M. Fradeani, D. Barduchchi. Aesthetic rehabilitation in fixed prosthodontics. Vol. 2. Moscow : Azbuka publishing House. 2010:600. (In Russ.)].
16. Dawood A. et al. 3D printing in dentistry // Br Dent J. - 2015; 219; 11: 521-529. DOI: 10.1038 / sj.bdj.2015.914
17. Gunpreet Oberoi et al. 3D Printing-Encompassing the Facets of Dentistry // Front Bioeng Biotechnol. - 2018; 6:172. DOI: 10.3389 / fbioe.2018.00172
18. Garcia J. et al. 3D printing materials and their use in medical education: a review of current technology and trends for the future // BMJ Simul Technol Enhanc Learn. - 2018; 14; 1:27-40. doihttps://doi.org/10.1136/bmjstel-2017-000234
19. Chung Y.J. et al. 3D Printing of Resin Material for Denture Artificial Teeth: Chipping and Indirect Tensile Fracture Resistance // Materials (Basel). - 2018; 11; 10:E1798. DOI: 10.3390 / ma11101798
20. Hui-Fang Y., Jianjiang Z., Yong W. 3D printing technology in oral medicine in the field of application // China Medical Equipment. - 2015; 30 (5):63-65. DOI: 10.7502 / j.issn.1674-3962.2016.05.08
21. Kim S.Y. et al. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging // Int J Prosthodont. - 2013; 26 (2):161-163. doi:https://doi.org/10.11607/ijp.3014.
22. Birnbaum N., Aaronson H. Dental impressions using 3D digital scanners: virtual becomes reality // Compend Contin Educ Dent. - 2008; 29; 8:498-505.
23. Izadi A. et al. Evaluation of dimensional accuracy of dental bridges manufactured with conventional casting technique and CAD/CAM system with Ceramill Sintron blocks using CMM // J Dent Res Dent Clin Dent Prospects. - 2018; 2; 4:264-271.
24. Lee Wan-Sun, Lee Du-Hyeong, Lee Kyu-Bok. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system // J Adv Prosthodont. - 2017; 9:265-270. DOI: 10.4047 / jap.2017.9.4.265
25. Flugge T. et al. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner // American Journal of Orthodontics and Dentofacial Orthopedics. - 2013; 144; 3:471-478. DOI: 10.1016 / j.ajodo.2013.04.017
26. Patzelt S. et al. The time efficiency of intraoral scanners: an in vitro comparative study // J Am Dent Assoc. - 2014; 145; 6:542-551.