MODERN MATERIALS USED IN THE REPARATIVE REGENERATION OF BONE TISSUE OF THE MAXILLOFACIAL REGION (REVIEW)
Abstract and keywords
Abstract (English):
An urgent problem of modern implantology remains the development of means and methods for restoring the integrity of bone tissue when defects occur. An important aspect of the problem remains the validity of the choice of osteoplastic material. Despite the fairly successful use of various types of osteoplastic materials in clinical implantology for the closure of small bone defects, the treatment of large diastases remains a subject of debate and requires further search and testing of various osteoplastic materials. Aim of the study: to analyze specialized scientific literature and describe the characteristics of the most common osteoplastic materials for replacing bone tissue defects. Methodology. This literature review was based on 63 sources from the following databases: PubMed, PubMed Central, Scopus, Medscape, Elibrary, ResearchGate, Google Scholar. Results. A description of osteoinductive materials used to replace bone defects in modern clinical practice is presented: ceramics, biocomposites based on them, corals, synthetic bones, mesenchymal stem cell cultures, 3D printing, etc. Emphasis is placed on the advantages and disadvantages of these methods. Conclusions. Based on the analysis of the literature, we can conclude that the problem of developing and introducing osteoplastic materials into clinical practice is a complex and multi-level area of joint activity of specialists in various fields. The most promising areas for further research are modifications of ceramic-based osteoplastic structures to increase their density, as well as additional cultivation of mesenchymal cells and 3D printing. However, these methods for replacing extensive bone tissue defects also need to be improved and new research conducted.

Keywords:
osteoregeneration, osteoplastic material, mesenchymal stem cells, 3D printing, bone defect
References

1. Demyashkin G.A., Ivanov S.Yu., Nuruev G.K., Fidarov A.F., Chuev V.V., Chueva A.A., Vadyuhin M.A., Bondarenko F.N. Morfofunkcional'nye osobennosti osteoregeneracii cherez chetyre mesyaca posle implantacii "BAK-1000" v kombinacii s angiostimulirovannymi MSK. Problemy stomatologii. 2022;18(3):114-118. [G.A. Demyashkin, S.Yu. Ivanov, G.K. Nuruyev, A.F. Fidarov, V.V. Chuev, A.A. Chueva, M.A. Vadyukhin, F.N. Bondarenko. Morphofunctional features of osteoregeneration four months after implantation of "BAK-1000" in combination with angiostimulated MSCs. Actual Problems in dentistry. 2022;18(3):114-118. (In Russ.)]. https://doi.org/10.35556/idr-2022-4(101)34-38

2. Ajami E., Fu C., Wen H.B., Bassett J., Park S.J., Pollard M. Early Bone Healing on Hydroxyapatite-Coated and Chemically-Modified Hydrophilic Implant Surfaces in an Ovine Model // Int J Mol Sci. – 2021;22(17):9361. https://doi.org/10.3390/ijms22179361

3. Atala A., Forgacs G. Three-Dimensional Bioprinting in Regenerative Medicine: Reality, Hype, and Future // Stem Cells Transl Med. – 2019;8:744-745. https://doi.org/10.1002/sctm.19-0089

4. Athirasala A., Tahayeri A., Thrivikraman G., França C.M., Monteiro N., Tran V., Ferracane J., Bertassoni L.E. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry // Biofabrication. – 2018;10:024101. https://doi.org/10.1088/1758-5090/aa9b4e

5. Bicer M., Cottrell G.S., Widera D. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells // Stem cell research & therapy. – 2021;12(1):31. https://doi.org/10.1186/s13287-020-02094-8

6. Bishop E.S., Mostafa S., Pakvasa M., Luu H.H., Lee M.J., Wolf J.M., Ameer G.A., He T.C., Reid R.R. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends // Genes Dis. – 2017;4:185-195. https://doi.org/10.1016/j.gendis.2017.10.002

7. Busra M.F.M., Lokanathan Y. Recent Development in the Fabrication of Collagen Scaffolds for Tissue Engineering Applications: A Review // Curr. Pharm. Biotechnol. – 2019;20:992-1003. https://doi.org/10.2174/1389201020666190731121016

8. Buza J.A., Einhorn T. Bone healing in 2016 // Clin Cases Miner Bone Metab. – 2016;13(2):101-105. https://doi.org/10.11138/ccmbm/2016.13.2.101

9. Cacciamali A., Villa R., Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications // Front Physiol. – 2022;13:836480. https://doi.org/10.3389/fphys.2022.836480

10. Chimene D., Miller L., Cross L.M., Jaiswal M.K., Singh I., Gaharwar A.K. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue // ACS Appl. Mater. Interfaces. – 2020;12:15976-15988. https://doi.org/10.1021/acsami.9b19037

11. de Lima C.O., de Oliveira A.L.M., Chantelle L., Silva Filho E.C., Jaber M., Fonseca M.G. Zn-doped mesoporous hydroxyapatites and their antimicrobial properties // Colloids Surf. B Biointerfaces. – 2021;198:111471. https://doi.org/10.1016/j.colsurfb.2020.111471

12. Dou C., Perez V., Qu J., Tsin A., Xu B., Li J. A State-of-the-Art Review of Laser-Assisted Bioprinting and its Future Research Trends // ChemBioEng Rev. – 2021;8:517-534. https://doi.org/10.1002/cben.202000037

13. Duarte Campos D.F., Zhang S., Kreimendahl F., Köpf M., Fischer H., Vogt M., Blaeser A., Apel C., Esteves-Oliveira M. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration // Connect Tissue Res. – 2020;61:205-215. https://doi.org/10.1080/03008207.2019.1640217

14. Dubey N., Ferreira J.A., Malda J., Bhaduri S.B., Bottino M.C. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue // ACS Appl. Mater. Interfaces. – 2020;12:23752-23763. https://doi.org/10.1021/acsami.0c05311

15. Dutta S.D., Bin J., Ganguly K., Patel D.K., Lim K.T. Electromagnetic field-assisted cell-laden 3D printed poloxamer-407 hydrogel for enhanced osteogenesis // RSC Adv. – 2021;11:20342-20354. https://doi.org/10.1039/d1ra01143j

16. El-Bassyouni G.T., Kenawy S.H., El-Aty A.A.A., Hamzawy E.M.A., Turky G.M. Influence of ZnO doped into hydroxyapatite: Structural, electrical, biocompatibility, and antimicrobial assessment // J. Mol. Struct. – 2022; 1268:133700. DOIhttps://doi.org/10.1016/j.molstruc.2022.133700

17. Angela M. Coomes, Brian L. Mealey, Guy Huynh-Ba, Concepcion Barboza-Arguello, William S. Moore, David L. Cochran. Buccal bone formatation after flapless extraction: randomized, clinical trial comparing recombinant human bone morphogenetic protein 2A/absorbable collagen carrier and collagen sponge alone. // J. Periodontol. 2014 Apr 85(4):525-35. https://doi.org/10.1902/jop.2013.130207

18. Tyler D Borg 1, Brian L Mealey. Histologic healing following tooth extraction with ridge preservation using mineralized versus combined mineralized-demineralized freeze-dried bone allograft: a randomized controlled clinical trial. . // J Periodontol. 2015 Mar;86(3):348-55. https://doi.org/10.1902/jop.2014.140483

19. Groll J., Burdick J.A., Cho D.W., Derby B., Gelinsky M., Heilshorn S.C., Jüngst T., Malda J., Mironov V.A., Nakayama K. A definition of bioinks and their distinction from biomaterial inks // Biofabrication. – 2018;11:013001. https://doi.org/10.1088/1758-5090/aaec52

20. Gu M., Li W., Jiang L., Li X. Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications // Acta Biomater. – 2022;148:22-43. https://doi.org/10.1016/j.actbio.2022.06.006

21. Huang Q., Liu Y., Ouyang Z., Feng Q. Comparing the regeneration potential between PLLA/Aragonite and PLLA/Vaterite pearl composite scaffolds in rabbit radius segmental bone defects // Bioact Mater. – 2020;5(4):980-989. https://doi.org/10.1016/j.bioactmat.2020.06.018

22. Jeong M., Radomski K., Lopez D., Liu J.T., Lee J.D., Lee S.J. Materials and Applications of 3D Printing Technology in Dentistry: An Overview // Dent J (Basel). – 2023;12(1):1. https://doi.org/10.3390/dj12010001

23. Kang H.W., Lee S.J., Ko I.K., Kengla C., Yoo J.J., Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity // Nat. Biotechnol. – 2016;34:312-319. https://doi.org/10.1038/nbt.3413

24. Karunakaran G., Cho E.-B., Kumar G.S., Kolesnikov E., Govindaraj S.K., Mariyappan K., Boobalan S. CTAB enabled microwave-hydrothermal assisted mesoporous Zn-doped hydroxyapatite nanorods synthesis using bio-waste Nodipecten nodosus scallop for biomedical implant applications // Environ. Res. – 2023;216:114683. https://doi.org/10.1016/j.envres.2022.114683

25. Keriquel V., Oliveira H., Rémy M., Ziane S., Delmond S., Rousseau B., Rey S., Catros S.; Amédée, J.; Guillemot, F. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications // Sci. Rep. – 2017;7:1778. https://doi.org/10.1038/s41598-017-01914-x

26. Kérourédan O., Hakobyan D., Rémy M., Ziane S., Dusserre N., Fricain J.C., Delmond S., Thébaud N.B., Devillard R. In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration // Biofabrication. – 2019;11:045002. https://doi.org/10.1088/1758-5090/ab2620

27. Kim D., Lee H., Lee G.H., Hoang T.H., Kim H.R., Kim G.H. Fabrication of bone-derived decellularized extracellular matrix/ceramic-based biocomposites and their osteo/odontogenic differentiation ability for dentin regeneration // Bioeng. Transl. Med. – 2022;7:e10317. https://doi.org/10.1002/btm2.10317

28. Kim J., Kim S., Song I. Biomimetic Octacalcium Phosphate Bone Has Superior Bone Regeneration Ability Compared to Xenogeneic or Synthetic Bone // Materials (Basel). – 2021;14(18):5300. https://doi.org/10.3390/ma14185300

29. Kouketsu A., Matsui K., Kawai T. Octacalcium phosphate collagen composite stimulates the expression and activity of osteogenic factors to promote bone regeneration // J Tissue Eng Regen Med. – 2020;14(1):99-107. https://doi.org/10.1002/term.2969

30. Kuss M.A., Harms R., Wu S., Wang Y., Untrauer J.B., Carlson M.A., Duan B. Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells // RSC Adv. – 2017;7:29312-29320. https://doi.org/10.1039/c7ra04372d

31. Latimer J.M., Maekawa S., Yao Y., Wu D.T., Chen M., Giannobile W.V. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects // Front. Bioeng. Biotechnol. – 2021;9:704048. https://doi.org/10.3389/fbioe.2021.704048

32. Lin Y.T., Hsu T.T., Liu Y.W., Kao C.T., Huang T.H. Bidirectional Differentiation of Human-Derived Stem Cells Induced by Biomimetic Calcium Silicate-Reinforced Gelatin Methacrylate Bioink for Odontogenic Regeneration // Biomedicines. – 2021;9:929. https://doi.org/10.3390/biomedicines9080929

33. Mandrycky C., Wang Z., Kim K., Kim D.H. 3D bioprinting for engineering complex tissues // Biotechnol. Adv. – 2016;34:422-434. https://doi.org/10.1016/j.biotechadv.2015.12.011

34. Marcondes G.M., Paretsis N.F., Fülber J., Navas-Suárez P.E., Mori C.M.C., Plepis A.M.G., Martins V.C.A., Fantoni D.T., Zoppa A.L.V. Evaluation of the Biocompatibility and Osteoconduction of the Carbon Nanotube, Chitosan and Hydroxyapatite Nanocomposite with or without Mesenchymal Stem Cells as a Scaffold for Bone Regeneration in Rats // Osteology. – 2021;1:118-131. https://doi.org/10.3390/osteology1030013

35. Ma Y., Ji Y., Zhong T., Wan W., Yang Q., Li A., Zhang X., Lin M. Bioprinting-Based PDLSC-ECM Screening for in vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels // ACS Biomater. Sci. Eng. – 2017;3:3534-3545. https://doi.org/10.1021/acsbiomaterials.7b00601

36. Mohd N., Razali M., Fauzi M.B., Abu Kasim N.H. In Vitro and In Vivo Biological Assessments of 3D-Bioprinted Scaffolds for Dental Applications // Int. J. Mol. Sci. – 2023;24:12881. https://doi.org/10.3390/ijms241612881

37. Mohd N., Razali M., Ghazali M.J., Abu Kasim N.H. Current Advances of Three-Dimensional Bioprinting Application in Dentistry: A Scoping Review // Materials. – 2022;15:6398. https://doi.org/10.3390/ma15186398

38. Moncal K.K., Gudapati H., Godzik K.P., Heo D.N., Kang Y., Rizk E., Ravnic D.J., Wee H., Pepley D.F., Ozbolat V. Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction // Adv. Funct. Mater. – 2021;31:2010858. https://doi.org/10.1002/adfm.202010858

39. Moncal K.K., Tigli Aydın R.S., Godzik K.P., Acri T.M., Heo D.N., Rizk E., Wee H., Lewis G.S., Salem A.K., Ozbolat I.T. Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats // Biomaterials. – 2022;281:121333. https://doi.org/10.1016/j.biomaterials.2021.121333

40. Nicoara A.I., Alecu A.E., Balaceanu G.-C., Puscasu E.M., Vasile B.S., Trusca R. Fabrication and Characterization of Porous Diopside/Akermanite Ceramics with Prospective Tissue Engineering Applications // Materials. – 2023;16:5548. https://doi.org/10.3390/ma16165548

41. Nisar A., Iqbal S., Atiq Ur Rehman M., Mahmood A., Younas M., Hussain S.Z., Tayyaba Q., Shah A. Study of physico-mechanical and electrical properties of cerium doped hydroxyapatite for biomedical applications // Mater. Chem. Phys. – 2023;299:127511. https://doi.org/10.1016/j.matchemphys.2023.127511

42. Papynov E.K., Shichalin O.O., Belov A.A., Buravlev I.Y., Mayorov V.Y., Fedorets A.N., Buravleva A.A., Lembikov A.O., Gritsuk D.V., Kapustina O.V. CaSiO3-HAp Metal-Reinforced Biocomposite Ceramics for Bone Tissue Engineering // J. Funct. Biomater. – 2023,14:259. https://doi.org/10.3390/jfb14050259

43. Radovanovi´c Ž., Joki´c B., Veljovi´c D., Dimitrijevi´c S., Koji´c V., Petrovi´c R., Jana´ckovi´c D. Antimicrobial activity and biocompatibility of Ag+ - and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+ - and Cu2+-doped hydroxyapatite // Appl. Surf. Sci. – 2014;307:513-519. DOIhttps://doi.org/10.1016/j.apsusc.2014.04.066

44. Radulescu D.-E., Vasile O.R., Andronescu E., Ficai A. Latest Research of Doped Hydroxyapatite for Bone Tissue Engineering // Int. J. Mol. Sci. – 2023;24:13157. https://doi.org/10.3390/ijms241713157

45. Redondo-Castro E., Cunningham C.J., Miller J., Brown H., Allan S.M., Pinteaux E. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming // Stem Cell Res Ther. – 2018;9(1):11. https://doi.org/10.1186/s13287-017-0753-5

46. Salhotra A., Shah H.N., Levi B., Longaker M.T. Mechanisms of bone development and repair // Nat Rev Mol Cell Biol. – 2020;21(11):696-711. https://doi.org/10.1038/s41580-020-00279-w

47. Schlickewei C.W., Kleinertz H., Thiesen D.M. Current and Future Concepts for the Treatment of Impaired Fracture Healing // Int J Mol Sci. – 2019;20(22):5805. https://doi.org/10.3390/ijms20225805

48. Schott N.G., Friend N.E., Stegemann J.P. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues // Tissue engineering. Part B, Reviews. – 2021;27(3):199-214. https://doi.org/10.1089/ten.TEB.2020.0132

49. Sheard J.J., Bicer M., Meng Y., Frigo A., Aguilar R.M., Vallance T.M., Iandolo D., Widera D. Optically transparent anionic nanofibrillar cellulose is cytocompatible with human adipose tissue-derived stem cells and allows simple imaging in 3D // Stem Cells Int. – 2019;2019:3106929. https://doi.org/10.1155/2019/3106929

50. Skeldon G., Lucendo-Villarin B., Shu W. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine // Philos. Trans. R. Soc. B Biol. Sci. – 2018;373:20170224. https://doi.org/10.1098/rstb.2017.0224

51. Stamnitz S., Klimczak A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice // Cells. – 2021;10(8):1925. https://doi.org/10.3390/cells10081925

52. Steijvers E., Ghei A., Xia Z. Manufacturing artificial bone allografts: a perspective // Biomater Transl. – 2022;3(1):65-80. https://doi.org/10.12336/biomatertransl.2022.01.007

53. Tavangarian F., Zolko C.A., Sadeghzade S., Fayed M., Davami K. Fabrication, Mechanical Properties and In-Vitro Behavior of Akermanite Bioceramic // Materials. – 2020;13:4887. https://doi.org/10.3390/ma13214887

54. Tian Y., Liu M., Liu Y., Shi C., Wang Y., Liu T., Huang Y., Zhong P., Dai J., Liu X. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique // J. Biomed. Mater. Res. – 2021;109:1209-1219. https://doi.org/10.1002/jbm.a.37114

55. Touya N., Devun M., Handschin C., Casenave S., Ahmed Omar N., Gaubert A., Dusserre N., De Oliveira H., Kérourédan O., Devillard R. In vitro and in vivo characterization of a novel tricalcium silicate-based ink for bone regeneration using laser-assisted bioprinting // Biofabrication. – 2022;14:024104. https://doi.org/10.1088/1758-5090/ac584b

56. Unagolla J.M., Jayasuriya A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives // Appl. Mater. Today. – 2019;18:100479. https://doi.org/10.1016/j.apmt.2019.100479

57. Vaiani L., Boccaccio A., Uva A.E. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes // J Funct Biomater. – 2023;14(3):146. https://doi.org/10.3390/jfb14030146

58. Vasilyev A.V., Kuznetsova V.S., Bukharova T.B. Development prospects of curable osteoplastic materials in dentistry and maxillofacial surgery // Heliyon. – 2020;6(8):e04686. https://doi.org/10.1016/j.heliyon.2020.e04686

59. Xue N., Ding X., Huang R. Bone Tissue Engineering in the Treatment of Bone Defects // Pharmaceuticals (Basel). – 2022;15(7):879. https://doi.org/10.3390/ph15070879

60. Yu L., Wu Y., Liu J., Li B., Ma B., Li Y., Huang Z., He Y., Wang H., Wu Z. 3D culture of bone marrow-derived mesenchymal stem cells (BMSCs) could improve bone regeneration in 3D-printed porous Ti6Al4V scaffolds // Stem Cells Int. – 2018;2018:2074021. https://doi.org/10.1155/2018/2074021

61. Zastulka A., Clichici S., Tomoaia-Cotisel M. Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes // Materials (Basel). – 2023;16(3):1303. https://doi.org/10.3390/ma16031303

62. Zhao R., Yang R., Cooper P.R., Khurshid Z., Shavandi A., Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments // Molecules. – 2021;26(10):3007. https://doi.org/10.3390/molecules26103007

63. Zorin V.L., Komlev V.S., Zorina A.I. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts // Biomedical Materials. – 2014;9:1-12. https://doi.org/10.1088/1748-6041/9/5/055005


Login or Create
* Forgot password?