Ufa, Ufa, Russian Federation
Ufa, Ufa, Russian Federation
UDK 616.31 Стоматология. Заболевания ротовой полости и зубов
The subject of the study is the importance of molecular genetic research methods in the study of the etiopathogenesis of osteomyelitis of the jaws. The purpose of the work is to provide up-to-date information to researchers, dental surgeons, and maxillofacial surgeons on the possibilities of molecular genetic research in identifying bacterial pathogens in osteomyelitis of the jaws, as well as to reflect genetic markers of pathogenicity factors for a number of the main causative agents of the disease. Methodology. International scientific databases PubMed, ScienceDirect, Scopus, Cochrane Collaboration, Elsevier, as well as electronic catalogs eLIBRARY.RU and CyberLeninka.ru were used. Results. A review of publications demonstrated that S. aureus and S. Epidermidis dominate the etiological spectrum of causative agents of bone tissue infections. The participation of these microorganisms is determined by a whole range of pathogenicity factors. Toxins and Panton-Valentine leukocidin (PVL) genes play a major role in the pathogenesis of osteomyelitis and disease progression. It has been shown that the pathogenic bacteria Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are capable of inducing differentiated production of cytokines. The most attention has been attracted to E. faecium, which exhibits multidrug resistance to a wide range of antibiotics. The proportion of infections mediated by S. epidermidis and S. Saprophyticus is, on average, about 25% of cases. The proportion of representatives of gram-negative flora Escherichia, Klebsiella, Enterobacter, Citrobacter, Proteus, Providencia, Serratia reaches 23% of cases. Pathogenic nosocomial strains of P. aeruginosa are also involved in the formation of chronic inflammation in osteomyelitis. According to the results of published studies, more than a third of cases of chronic osteomyelitis are mediated by microbial associations, which are dominated by S. aureus, S. epidermidis and, less commonly, E. faecalis. Conclusions. The use of PCR analysis to identify the causative agents of osteomyelitis and gene amplification using specific primers has a huge advantage over routine microbiological tests, being an informative method for studying the pathogenicity factors of the main pathogens. The high importance of molecular genetic methods in the study of the etiopathogenesis of osteomyelitis of the jaws requires their widespread use in the clinic of surgical dentistry and maxillofacial surgery to successfully solve complex problems in the rehabilitation of patients with this disease.
literature review, osteomyelitis of the jaw, PCR, molecular genetic research methods, genetic markers of osteomyelitis pathogens
1. Spyropoulou V., Dhouib Chargui A., Merlini L., Samara E., Valaikaite R., Kampouroglou G. et al. Primary subacute hematogenous osteomyelitis in children: a clearer bacteriological etiology // J Child Orthop. – 2016;10(3):241-246. https://doi.org/10.1007/s11832-016-0739-3
2. Nishitani K., Sutipornpalangkul W., de Mesy Bentley K.L., Varrone J.J., Bello-Irizarry S.N., Ito H. et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors // J Orthop Res. – 2015;33(9):1311-1319. https://doi.org/10.1002/jor.22907
3. Mariani B.D., Martin D.S., Chen A.F., Yagi H., Lin S.S., Tuan R.S. Polymerase Chain Reaction molecular diagnostic technology for monitoring chronic osteomyelitis // J Exp Orthop. – 2014;1(1):9. https://doi.org/10.1186/s40634-014-0009-6
4. Ferroni A., Al Khoury H., Dana C., Quesne G., Berche P., Glorion C. et al. Prospective survey of acute osteoarticular infections in a French paediatric orthopedic surgery unit // Clin Microbiol Infect. – 2013;19(9):822-828. https://doi.org/10.1111/clm.12031
5. Qian J., Huang D., Fang M. A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance // Food Control. – 2022;132:108485. https://doi.org/10.1016/j.foodcont.2021.108485
6. Shibata S., Tanizaki R., Watanabe K., Makabe K., Shoda N., Kutsuna S. et al. Escherichia coli Vertebral Osteomyelitis Diagnosed According to Broad-range 16S rRNA Gene Polymerase Chain Reaction (PCR) // Intern Med. – 2015;54(24):3237-3240. https://doi.org/10.2169/internalmedicine.54.5066
7. Goncharov A.E., Zueva L.P., Kolodzhieva V.V. Sposob opredeleniya genotipov zolotistogo stafilokokka. Patent RF № 2526497 S2.2014. [A.E. Goncharov, L.P. Zueva, V.V. Kolodzhieva. Method for determination of Staphylococcus aureus genotypes. Patent RF № 2526497 S2. 2014. (In Russ.)]. https://www.elibrary.ru/download/elibrary_37803418_80472848.pdf
8. Szafranska A.K., Oxley A.P., Chaves-Moreno D., Horst S.A., Roßlenbroich S., Peters G. et al. High-resolution transcriptomic analysis of the adaptive response of Staphylococcus aureus during acute and chronic phases of osteomyelitis // mBio. – 2014;5(6):e01775-e017714. https://doi.org/10.1128/mBio.01775-14
9. Jarraud S., Mougel C., Thioulouse J., Lina G., Meugnier H., Forey F. et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease // Infect Immun. – 2002;70(2):631-641. https://doi.org/10.1128/IAI.70.2.631-641.2002
10. Beenken K.E., Mrak L.N., Griffin L.M., Zielinska A.K., Shaw L.N., Rice K.C. et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation // PLoS One. – 2010;5(5):e10790. https://doi.org/10.1371/journal.pone.0010790
11. Tristan A., Ying L., Bes M., Etienne J., Vandenesch F., Lina G. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections // J Clin Microbiol. – 2003;41(9):4465-4467. https://doi.org/10.1128/JCM.41.9.4465-4467.2003
12. Johansson A., Flock J.I., Svensson O. Collagen and fibronectin binding in experimental staphylococcal osteomyelitis // Clin Orthop Relat Res. – 2001;(382):241-246. https://doi.org/10.1097/00003086-200101000-00032
13. Que Y.A., François P., Haefliger J.A., Entenza J.M., Vaudaux P., Moreillon P. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis // Infect Immun. – 2001;69(10):6296-6302. https://doi.org/10.1128/IAI.69.10.6296-6302.2001
14. Wiśniewska K., Piórkowska A., Kasprzyk J., Bronk M., Świeć K. Clonal distribution of bone sialoprotein-binding protein gene among Staphylococcus aureus isolates associated with bloodstream infections // Folia Microbiol (Praha). – 2014;59(6):465-471. https://doi.org/10.1007/s12223-014-0321-7
15. Wann E.R., Gurusiddappa S., Hook M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen // J Biol Chem. – 2000;275(18):13863-13871. https://doi.org/10.1074/jbc.275.18.13863
16. Vandenesch F., Naimi T., Enright M.C., Lina G., Nimmo G.R., Heffernan H. et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence // Emerg Infect Dis. – 2003;9(8):978-984. https://doi.org/10.3201/eid0908.030089
17. Storz G., Vogel J., Wassarman K.M. Regulation by small RNAs in bacteria: expanding frontiers // Mol Cell. – 2011;43(6):880-891. https://doi.org/10.1016/j.molcel.2011.08.022
18. Palka-Santini M., Pützfeld S., Cleven B.E., Krönke M., Krut O. Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing // J Microbiol Methods. – 2007;68(3):468-477. https://doi.org/10.1016/j.mimet.2006.10.004
19. Duman Y., Sevimli R. Investigation of the presence of pantone-valentine leukocidin in Staphylococcus aureus strains isolated from orthopedic surgical site infections // Mikrobiyol Bul. – 2018;52(4):340-347. https://doi.org/10.5578/mb.67328
20. Dubrac S., Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus // J Bacteriol. – 2004;186(4):1175-1181. https://doi.org/10.1128/JB.186.4.1175-1181.2004
21. Zhu X., Zhang K., Lu K., Shi T., Shen S., Chen X. et al. Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in traumatic osteomyelitis // Ann Transl Med. – 2019;7(8):170. https://doi.org/10.21037/atm.2019.03.40
22. Buharin O.V., Valysheva I.V., Kartashova O.L., Sycheva M.V. Harakteristika virulentnogo potenciala klinicheskih izolyatov enterokokkov. Zhurnal mikrobiologii. 2013;3:12-18. [O.V. Buharin, I.V. Valysheva, O.L. Kartashova, M.V. Sycheva. Characterization of the virulent potential of clinical isolates of enterococci. Journal of Microbiology. 2013;(3):12-18. (In Russ.)]. https://www.elibrary.ru/item.asp?id=23140970
23. Kuznecova M.V., Pavlova Yu.A., Karpunina T.I., Demakov V.A. Opyt ispol'zovaniya metodov molekulyarnoy genetiki pri identifikacii klinicheskih shtammov Pseudomonas aerugenosa. Klinicheskaya laboratornaya diagnostika. 2013;3:34-37. [M.V. Kuznecova, Ju.A. Pavlova, T.I. Karpunina, V.A. Demakov. Experience of using molecular genetics methods in the identification of clinical strains of Pseudomonas aerugenosa. Clinical laboratory diagnostics. 2013;(3):34-37. (In Russ.)]. https://www.elibrary.ru/item.asp?id=18923096
24. Hadi Saleh T., Hashim S., Abdulrazaq Al-Obaidi R.A., Laftaah Al-Rubaii B.A. A biological study of chitinase produced by clinical isolates of pseudomonas aeruginosa and detection of chia responsible gene // Int J Res Pharm Sci. – 2020;11(2):1539-1544. htpps://doi.org/10.26452/ijrps.v11i2.2030
25. Tang Y., Ali Z., Jin G. Detection methods for: Pseudomonas aeruginosa: History and future perspective // RSC Advances. – 2017; 82(7): 51789-51800. htpps://doi.org/10.1039/c7ra09064a
26. De Vos D., Lim A. Jr., Pirnay J.P., Struelens M., Vandenvelde C., Duinslaeger L. et al. Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL // J Clin Microbiol. – 1997;35(6):1295-1299. htpps://doi.org/10.1128/jcm.35.6.1295-1299.1997
27. Jami Al-Ahmadi G., Zahmatkesh Roodsari R. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR // Ann Burns Fire Disasters. – 2016;29(4):264-267. https://pubmed.ncbi.nlm.nih.gov/28289359
28. Aghamollaei H., Moghaddam M.M., Kooshki H., Heiat M., Mirnejad R., Barzi N.S. Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes // J Infect Public Health. – 2015;8(4):314-322. htpps://doi.org/10.1016/j.jiph.2015.03.003
29. Khuntayaporn P., Yamprayoonswat W., Yasawong M., Chomnawang M.T. Dissemination of carbapenem-resistance among multidrug resistant pseudomonas aeruginosa carrying metallo-beta-lactamase genes, including the novel blaimp-65 gene in Thailand // Infect Chemother. – 2019;51(2):107-118. htpps://doi.org/10.3947/ic.2019.51.2.107
30. Naas T., Aubert D., Lambert T., Nordmann P. Complex genetic structures with repeated elements, a sul-type class 1 integron, and the blaVEB extended-spectrum beta-lactamase gene // Antimicrob Agents Chemother. – 2006;50(5):1745-1752. htpps://doi.org/10.1128/AAC.50.5.1745-1752.2006
31. Widmer F., Seidler R.J., Gillevet P.M., Watrud L.S., Di Giovanni G.D. A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples // Appl Environ Microbiol. – 1998;64(7):2545-2553. htpps://doi.org/10.1128/AEM.64.7.2545-2553.1998
32. Mavzyutov A.R., Mirsayapova I.A., Hasanova G.F., Baymiev A.H. Sravnitel'naya ocenka informativnosti metodov etiologicheskoy diagnostiki vnebol'nichnoy pnevmonii. Klinicheskaya laboratornaya diagnostika. 2012;12:35-38. [A.R. Mavzjutov, I.A. Mirsajapova, G.F. Hasanova, A.H. Bajmiev. Comparative assessment of the information content of methods for the etiological diagnosis of community-acquired pneumonia. Clinical laboratory diagnostics. 2012;12:35-38. (In Russ.)]. https://www.elibrary.ru/item.asp?id=18762226
33. Huey B., Hall J. Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13 // J Bacteriol. – 1989;171(5):2528-2532. htpps://doi.org/10.1128/jb.171.5.2528-2532.1989
34. Kuznecova M.V., Maksimova A.V., Karpunina T.I. Opyt ispol'zovaniya Rep- i RAPD-polimeraznoy cepnoy reakcii dlya epaidemiologicheskoy harakteristiki nozokominal'nyh izolyatov Pseudomonas aeruginosa. Klinicheskaya laboratornaya diagnostika. 2015;3:44-50. [M.V. Kuznecova, A.V. Maksimova, T.I. Karpunina. Experience of using Rep- and RAPD-polymerase chain reaction for epidemiological characterization of nosocomial isolates of Pseudomonas aeruginosa. Clinical laboratory diagnostics. 2015;3:44-50. (In Russ.)]. https://pubmed.ncbi.nlm.nih.gov/26031166