Abstract and keywords
Abstract (English):
Nowadays, the relevance of the diagnosis and treatment of facial bones, especially the midfacial region, is undoubted. According to scientific literature, the incidence of facial bone fractures is up to 16% in the total structure of fractures [5, 10, 13]. Such injuries can lead to aesthetic disorders in the form of various post-traumatic deformities, often disfiguring the face of patients, as well as lead to functional disorders of varying severity. According to variability of traumatic injuries of the facial bones, polymorphism of clinical manifestations, as well as the aesthetic and functional significance of the area under consideration, the need to individualize the medical and diagnostic process is formed [7–9, 11, 14, 15, 17]. The individualization of the approach to the diagnosis and treatment of patients is gaining more and more popularity and today is one of the more significant vectors for the development of practical medicine, opening new horizons for specialists in various fields of medical science. One of the most interest directions of this approach is the use of additive manufacturing technologies. Additive prototyping and virtual modeling open up wide possibilities for customizing diagnostics and treatment in accordance with a specific clinical situation. Modern computer modeling technologies enable representatives of various medical specialties, including maxillofacial surgeons, not only to be limited to preoperative planning using virtual prototypes of defective zones and also to model structures that replace various bone defects based on additive technologies by printing of high-precision physical models of the damaged zone. In turn, the presence of such means of visualization of injury areas already at the preoperative stage makes it possible to develop individualized augments of bony defects, taking into account all the features of the anatomical structures of a particular patient [1–4, 6, 16]. The article deals on the results of a comparative study of the effectiveness of surgical treatment of maxillary fractures in the orbital region using an algorithm based on the use of additive manufacturing technologies and traditional methods.

orbit, reconstructive surgery, fracture, maxillofacial surgery, additive technologies, modeling, prototyping

1. Abdulkerimov T.H. Obosnovanie primeneniya additivnyh tehnologiy v hirurgicheskom lechenii perelomov verhney chelyusti v oblasti orbity : dis. ... kand. med. nauk. Ekaterinburg, 2022:151. [T.Kh. Abdulkerimov. Rationale for the use of additive technologies in the surgical treatment of fractures of the upper jaw in the orbital area: dis. ... cand. med. sciences. Ekaterinburg, 2022:151. (In Russ.)].

2. Abdulkerimov T. H. Obosnovanie primeneniya additivnyh tehnologiy v hirurgicheskom lechenii perelomov verhney chelyusti v oblasti orbity : avtoref. dis. ... kand. med. nauk. Perm', 2022:23. [T.Kh. Abdulkerimov. Rationale for the use of additive technologies in the surgical treatment of fractures of the upper jaw in the orbital region : author. dis. ... cand. med. sciences. Perm, 2022:23. (In Russ.)].

3. Abdulkerimov T.H., Mandra Yu.V., Abdulkerimov H.T. i dr. Primenenie tehnologiy komp'yuternogo modelirovaniya i 3D-printinga v diagnostike i lechenii pacientov s perelomami kostey sredney zony licevogo skeleta. Problemy stomatologii. 2021;2(17):172-176. [T.Kh. Abdulkerimov, Yu.V. Mandra, Kh.T. Abdulkerimov. Application of computer modeling and 3D-printing technologies in the diagnosis and treatment of patients with bone fractures of the middle zone of the facial skeleton. Actual problems in dentistry. 2021;2(17):172-176. (In Russ.)]. https://elibrary.ru/item.asp?id=46411887

4. Bagaturiya G. O. Perspektivy ispol'zovaniya 3D-pechati pri planirovanii hirurgicheskih operaciĭ. Medicina: teoriya i praktika. 2016;1:26-28. [G.O. Bagaturia. Prospects for the use of 3D printing in the planning of surgical operations. Medicine: theory and practice. 2016;1:26-28. (In Russ.)]. https://elibrary.ru/item.asp?id=29830345

5. Abdulkerimov T.H., Mandra Yu.V., Abdulkerimov H.T. i dr. Sovremennye podhody k diagnostike i lecheniyu perelomov stenok orbit. Problemy stomatologii. 2019;3(15):5-11. [T.Kh. Abdulkerimov, Yu.V. Mandra, Kh.T. Abdulkerimov. Modern approaches to the diagnosis and treatment of orbital wall fractures. Actual problems in dentistry. 2019;3(15):5-11. (In Russ.)]. https://www.elibrary.ru/item.asp?id=41212337

6. Kirilenko S.I., Kovalev E.V., Dubrovskiĭ V.V., Gurinovich V.A. Pervyĭ opyt primeneniya tehnologii 3d-pechati, v kachestve predoperacionnogo planirovaniya, u pacienta s patologieĭ kraniovertebral'noĭ oblasti. Medicinskie novosti. 2020;8(311):49-51. [S.I. Kirilenko, E.V. Kovalev, V.V. Dubrovsky, V.A. Gurinovich. The first experience of using 3D printing technology as a preoperative planning in a patient with pathology of the craniovertebral region. Medical news. 2020;8(311):49-51. (In Russ.)]. https://cyberleninka.ru/article/n/pervyy-opyt-primeneniya-tehnologii-3d-pechati-v-kachestve-predoperatsionnogo-planirovaniya-u-patsienta-s-patologiey

7. Krivenko N.V., Petrenko V.A., Zhuravlev V.P., Klevakin A.Yu. Ekonomicheskiĭ effekt hirurgicheskogo lecheniya postradavshih s povrezhdeniyami verhneĭ chelyusti. Problemy stomatologii. 2010;5:34-35. [Krivenko N.V., Petrenko V.A., Zhuravlev V.P., Klevakin A.Yu. Economic effect of surgical treatment of patients with injuries of the upper jaw. Actual problems in dentistry. 2010;5:34-35. (In Russ.)]. https://elibrary.ru/item.asp?id=16223929

8. Petrovic V., Haro J.V., Blasco J.B., Portolés L. Additive Manufacturing Solutions for Improved Medical Implants // Biomedicine. – 2012. Doi: 10.5772/38349.

9. Düzgün S., Sirkeci B.K. Comparison of post-operative outcomes of graft materials used in reconstruction of blow-out fractures // Ulusal Travma ve Acil Cerrahi Dergisi. – 2020;26(4):538-544. Doi: 10.14744/tjtes.2020.80552.

10. Abdulkerimov T Kh. Mandra Yu.V., Gerasimenko V.I. et al. Frequency of the orbital wall’s fractures. A retrospective study // Actual problems in dentistry. – 2019;2(15):46-49. https://cyberleninka.ru/article/n/frequency-of-the-orbital-walls-fractures-a-retrospective-study

11. Pasha S.Y., Mohamadi M., Abesi F., Khafri S. Frequency of maxillofacial fractures among patients with head and neck trauma referred to shahid beheshti hospital in Babol, 2018-2019 // Journal of Babol University of Medical Sciences. – 2021;23(1):126-134. doi: 10.22088/jbums.23.1.126

12. Hayder G., Ismael W. The Evaluation of Complications of Titanium Mesh Reconstruction in Orbital Floor Fractures // Iraqi Postgraduate Medical Journal. – 2021;20(1):67-71. Doi: 10.52573/ipmj.2021.167828.

13. Bittermann G., Metzger M.C., Schlager S. et al. Orbital reconstruction: Prefabricated implants, data transfer, and revision surgery // Facial Plastic Surgery. – 2014;30(5):554-560. Doi: 10.1055/s-0034-1395211.

14. Kasaee A., Mirmohammadsadeghi A., Kazemnezhad F. et al. The predictive factors of diplopia and extraocular movement limitations in isolated pure blow-out fracture // Journal of Current Ophthalmology. – 2017;29(1):54-58. Doi: 10.1016/j.joco.2016.09.001.

15. Costan V.V., Boisteanu O., Timofte D., Marius D. The value of titanium mesh in cranio-maxillofacial reconstructive surgery // Revista de Chimie. – 2019;70(8):3021-3023. Doi:10.37358/RC.19.8.7478.

16. Thomas D.J., Azmi M.A.B.M., Tehrani Z. 3D additive manufacture of oral and maxillofacial surgical models for preoperative planning // International Journal of Advanced Manufacturing Technology. – 2014;71(9-12):1643-1651. https://doi.org/10.1007/S00170-013-5587-4.

17. Ganesh P., Mahipathy S.R.R.V., Rajan V.T.T. et al. Traditional Versus Virtual Surgery Planning of the Fronto-Orbital Unit in Anterior Cranial Vault Remodeling Surgery // The Journal of craniofacial surgery. – 2021;32(1):285-289. Doi: 10.1097/SCS.0000000000007086.

Login or Create
* Forgot password?