Chelyabinsk, Chelyabinsk, Chelyabinsk, Russian Federation
Chelyabinsk, Chelyabinsk, Russian Federation
Subject. The relevance of this review is related to the increasing number of patients taking osteomodifying agents. Osteomodifying agents are used in the treatment of bone metastases of malignant tumors and osteoporosis. A serious complication associated with the use of osteomodifying agents – bisphosphonates – is bisphosphonate osteonecrosis of the jaw. There are also data on the development of osteonecrosis of the jaw when taking denosumab. However, the pathogenesis of this complication is not fully understood. Study of etiological factors and pathogenetic mechanisms of jaw osteonecrosis development, associated with taking osteomodifying agents will allow to prevent it at early stages and improve quality of life of patients. Objectives – analysis of foreign studies on the impact of osteomodifying agents on the human body and associated osteonecrosis of the jaws. Methodology. The literature review was carried out on the basis of the analysis of the published studies. Using the key words in the electronic resource of the journal "Nature" the foreign scientific studies with the results of the research on the influence of the osteomodifying agents on the human body and the cases of osteonecrosis of the jaws associated with them were selected. Results. OMAs increase bone density through several mechanisms. However, some osteomodifying agents increase the risk of atypical fractures of the femur, forearms, and vertebrae, and increase the incidence of osteonecrosis of the jaw and some cancers. Research continues on risk factors for these complications in patients taking osteomodifying agents. Conclusion. Osteomodifying agents are widely used in oncology and prevention of age-related changes in the human bone system. Therapeutic effects and complications of therapy with osteomodifying agents are studied worldwide.
osteomodifying agents, bisphosphonates, bone metastases, osteoporosis, osteonecrosis of the jaw
1. Cassinello Espinosa J., González Del Alba Baamonde A., Rivera Herrero F., Holgado Martín E. SEOM (Spanish Society of Clinical Oncology). SEOM guidelines for the treatment of bone metastases from solid tumours // Clin Transl Oncol. - 2012;14(7):505-511. doi:https://doi.org/10.1007/s12094-012-0832-0.
2. Yarom N. et al. Medication-related osteonecrosis of the jaw: MASCC/ISOO/ASCO clinical practice guideline // J. Clin. Oncol. - 2019;37:2270-2290. doi:https://doi.org/10.1200/JCO.19.01186.
3. Yang X., Xu X., Chen J. et al. Zoledronic acid regulates the synthesis and secretion of IL-1β through Histone methylation in macrophages // Cell Death Discov. - 2020;6:47. doihttps://doi.org/10.1038/s41420-020-0273-4
4. Hughes D.E., MacDonald B.R., Russell R.G., Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow // J. Clin. Investig. - 1989;83:1930-1935. doi:https://doi.org/10.1172/JCI114100.
5. Hughes D.E. et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo // J. Bone Miner. Res. - 1995;10:1478-1487. doi:https://doi.org/10.1002/jbmr.5650101008.
6. Nuti R., Brandi M.L., Checchia G., Di Munno O., Dominguez L., Falaschi P., Fiore C.E., Iolascon G., Maggi S., Michieli R., Migliaccio S., Minisola S., Rossini M., Sessa G., Tarantino U., Toselli A., Isaia G.C. Guidelines for the management of osteoporosis and fragility fractures // Intern Emerg Med. - 2019;14(1):85-102. DOI:10.1007 / s11739-018-1874-2
7. Kim Y., Tian Y., Yang J. et al. Comparative safety and effectiveness of alendronate versus raloxifene in women with osteoporosis // Sci Rep. - 2020;10:11115. doihttps://doi.org/10.1038/s41598-020-68037-8
8. Estell E.G., Rosen C.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis // Nat Rev Endocrinol. - 2021;17:31-46. doihttps://doi.org/10.1038/s41574-020-00426-5
9. Kim J., Jang S.B., Kim S.W., Oh J.K., Kim T.H. Clinical effect of early bisphosphonate treatment for pyogenic vertebral osteomyelitis with osteoporosis: An analysis by the Cox proportional hazard model // Spine J. - 2019;19(3):418-429. DOI: 10.1016 / j.spinee.2018.08.014.
10. Tanner C.M., Cummings S.R., Schwarzschild M.A. et al. The TOPAZ study: a home-based trial of zoledronic acid to prevent fractures in neurodegenerative parkinsonism // Parkinsons Dis. - 2021;7:16. Doihttps://doi.org/10.1038/s41531-021-00162-1
11. Soo Min Cha, Hyun Dae Shin. Risk factors for atypical forearm fractures associated with bisphosphonate usage // Injury. - 2021;52;6:1423-1428. doihttps://doi.org/10.1016/j.injury.2020.10.087.
12. Li Y.Y., Gao LJ., Zhang Y.X. et al. Bisphosphonates and risk of cancers: a systematic review and meta-analysis // Br J Cancer. - 2020;123:1570-1581. doihttps://doi.org/10.1038/s41416-020-01043-9
13. Tesfamariam Y., Jakob T., Wöckel A., Adams A., Weigl A., Monsef I., Kuhr K., Skoetz N. Adjuvant bisphosphonates or RANK-ligand inhibitors for patients with breast cancer and bone metastases: a systematic review and network meta-analysis // Critical Reviews in Oncology/Hematology. - 2019;137:1-8. Doihttps://doi.org/10.1016/j.critrevonc.2019.02.004.
14. Yuan Y., Song J.X., Zhang M.N. et al. A multiple drug loaded, functionalized pH-sensitive nanocarrier as therapeutic and epigenetic modulator for osteosarcoma // Sci Rep. - 2020;10:15497. doihttps://doi.org/10.1038/s41598-020-72552-z
15. Jiang Z., Li J., Chen S. et al. Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis // Sci Rep. - 2020;10:13675. doihttps://doi.org/10.1038/s41598-020-70659-x
16. Ashrafi M., Ghalichi F., Mirzakouchaki B. et al. On the effect of antiresorptive drugs on the bone remodeling of the mandible after dental implantation: a mathematical model // Sci Rep. - 2021;11:2792. doihttps://doi.org/10.1038/s41598-021-82502-y
17. de Sousa F.R.N., de Sousa Ferreira V.C., da Silva Martins C. et al. The effect of high concentration of zoledronic acid on tooth induced movement and its repercussion on root, periodontal ligament and alveolar bone tissues in rats // Sci Rep. - 2021;11:7672. doihttps://doi.org/10.1038/s41598-021-87375-9
18. Kim J.Y., Jang H.W., Kim J.I. et al. Effects of pre-extraction intermittent PTH administration on extraction socket healing in bisphosphonate administered ovariectomized rats // Sci Rep. - 2021;11:54. Doihttps://doi.org/10.1038/s41598-020-79787-w
19. Kanwar N., Bakr M., Meer M. et al. Emerging therapies with potential risks of medicine-related osteonecrosis of the jaw: a review of the literature // Br Dent J. - 2020;228:886-892. doihttps://doi.org/10.1038/s41415-020-1642-3
20. Chadwick J.W., Tenenbaum H.C., Sun CX. et al. The effect of pamidronate delivery in bisphosphonate-naïve patients on neutrophil chemotaxis and oxidative burst // Sci Rep. - 2020;10:8309. doihttps://doi.org/10.1038/s41598-020-75272-6
21. Otto S., Pautke C., Van den Wyngaert T., Niepel D., Schiødt M. Medication-related osteonecrosis of the jaw: prevention, diagnosis and management in patients with cancer and bone metastases // Cancer Treat. Rev. - 2018;69:177-187. doi:https://doi.org/10.1016/j.oooo.2018.09.008.
22. Fung P. et al. Time to onset of bisphosphonate-related osteonecrosis of the jaws: a multicentre retrospective cohort study // Oral Dis. - 2017;23:477-483. doihttps://doi.org/10.1111/odi.12632 .
23. Jung S.M., Han S., Kwon H.Y. Dose-intensity of bisphosphonates and the risk of osteonecrosis of the jaw in osteoporosis patients // Front. Pharmacol. - 2018. doihttps://doi.org/10.3389/fphar.2018.00796 .
24. Sankar P.S. et al. Osteonecrosis of the jaw among patients receiving antiresorptive medication: a 4-year retrospective study at a Tertiary Cancer Center, Kerala India // Contemp. Clin. Dent. - 2018;9:35-40. doihttps://doi.org/10.4103/ccd.ccd_696_17.
25. Kuo P.I., Lin T.M., Chang Y.S. et al. Primary Sjogren syndrome increases the risk of bisphosphonate-related osteonecrosis of the jaw // Sci Rep. - 2021;11:1612. Doihttps://doi.org/10.1038/s41598-020-80622-5
26. De Oliveira L.R., Marcelo Ivander Andrade Wanderley et. al. Atypical presentation of MRONJ in a patient with iron-deficiency anemia // Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. - 2020;129;1;e36. https://doi.org/10.1016/j.oooo.2019.06.105.
27. Pichardo S.E.C., J.G. van der Hee, Fiocco M., Appelman-Dijkstra N.M, van Merkesteyn J.P.R. Dental implants as risk factors for patients with medication-related osteonecrosis of the jaws (MRONJ) // British Journal of Oral and Maxillofacial Surgery. - 2020;58;7:771-776. doihttps://doi.org/10.1016/j.bjoms.2020.03.022
28. Bernardi S., Di Girolamo M., Necozione S., Continenza M.A., Cutilli T. Antiresorptive drug-related osteonecrosis of the jaws, literature review and 5 years of experience // Musculoskelet Surg. - 2019;103(1):47-53. DOI:10.1007 / s12306-018-0548-6
29. Eliyas S., Porter R. An impossible choice: MRONJ vs ORN? The difficulties of the decision-making process for head and neck cancer patients on long-term anti-angiogenic medication // Br Dent J. - 2020;229:587-590. doihttps://doi.org/10.1038/s41415-020-2276-1
30. Ganesan K., Bansal P., Goyal A. et al. Bisphosphonate. Treasure Island (FL) : StatPearls Publishing. 2021. https://www.ncbi.nlm.nih.gov/books/NBK470248/
31. Garcia F., Assuncao N., Siqueira J.M., Pinto C.A., Alves F., Lopes R.N., Rocha A.C. Association of different approaches for an extensive case of osteonecrosis of the jaw // Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. - 2020;129;1:e38. https://doi.org/10.1016/j.oooo.2019.06.114