Yekaterinburg, Ekaterinburg, Russian Federation
Yekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Ekaterinburg, Ekaterinburg, Russian Federation
Today, 16% of all traumatic injuries occur in the area of the facial skeleton. The social-economic component of this problem is also important, because in most cases such injuries are received by representatives of the able-bodied population [4]. The area of interest requires special attention due to the proximity of vital anatomical structures, as well as its aesthetic significance, which will determine the quality of social rehabilitation of patients with craniofacial injuries, especially the midfacial region. The complexity of the facial skeleton structures, massive vascularization and innervation of the craniofacial region in many cases are the causes of difficulties in the diagnosis and treatment processes in patients with facial injuries, which negatively affects the quality of medical care and further rehabilitation, social adaptation [1-25]. Introduction of digital technologies such as computer modeling and 3D-printing into the processes of diagnosis and treatment in patients with craniofacial fractures allows minimizing the number of possible mistakes even at the stage of primary diagnosis, planning the upcoming surgical intervention and modeling a high-precision individualized augment for replacing bony defects [8]. Digitalization of diagnostic and treatment procedures will, in turn, bring the accuracy of the reconstruction to a fundamentally new level, reduce the duration of treatment and rehabilitation, including social rehabilitation [4]. The article presents the results of a comparative analysis of the traditional algorithm for diagnosing and treating maxillary fractures in region of orbital floor using a standard titanium mesh, as well as its improved version, improved by the use of 3D modeling and printing technologies.
Orbit, reconstructive surgery, fracture, craniomaxillofacial surgery, 3D-technologies, modeling
1. Abdulkerimov T.H., Mandra Yu.V., Abdulkerimov H.T., Abdulkerimov Z.H., Mandra E.V., Boldyrev Yu.A., Shimova M.E., Shneyder O.L., Chagay A.A. Sovremennye podhody k diagnostike i lecheniyu perelomov stenok orbit. Problemy stomatologii. 2019;15(3):5-11. [T.Kh. Abdulkerimov, Yu.V. Mandra, Kh.T. Abdulkerimov, Z.Kh. Abdulkerimov, E.V. Mandra, Yu.A. Boldyrev, M.E. Shimova, O.L. Shneider, A.A. Chagai. Modern approaches to the diagnosis and treatment of orbital wall fractures. Actual problems in dentistry. 2019;15(3):5-11. (In Russ.)]. https://www.elibrary.ru/item.asp?id=41212337
2. Brennan P., Schliephake H., Ghali G.E., Cascarini L. Maxillofacial surgery. 3-rd ed. St. Louis : Elsevier. 2017:1562.
3. Ehrenfeld M., Manson P., Prein J. Principles of internal fixation of the Craniomaxillofacial skeleton. Trauma and orthognathic surgery. Zurich : Thieme. 2012:395.
4. Abdulkerimov T., Mandra Y., Gerasimenko V., Tsekh D., Samatov N., Mandra E., Gegalina N., Yepishova A. Frequency of the orbital walls fractures. A retrospective study // Actual problems in dentistry. - 2019;2.
5. Al-Moraissi E. et al. What surgical approach has the lowest risk of the lower lid complications in the treatment of orbital floor and periorbital fractures? A frequentist network meta-analysis // Journal of Cranio-Maxillofacial Surgery. - 2018;46:2164-2175.
6. Barcic S. et al. Comparison of preseptal and retroseptal transconjunctival approaches in patients with isolated fractures of the orbital floor // Journal of Cranio-Maxillofacial Surgery. - 2018;46;3:388-390.
7. Cohn J.E., Smith K.C., Licata J.J., Michael A., Zwillenberg S., Burroughs T., Arosarena O.A. Comparing Urban Maxillofacial Trauma Patterns to the National Trauma Data Bank©. // Ann Otol Rhinol Laryngol. - 2019.
8. Costan V.V. et al. The Impact of 3D Technology in Optimizing Midface Fracture Treatment - Focus on the Zygomatic Bone // J Oral and Maxillofac Surg. - 2012;79(4):880-891.
9. Darwich A. et al. Biomechanical assessment of orbital fractures using patient-specificmodels and clinical matching // J Stomatol Oral Maxillofac Surg. https://doi.org/10.1016/j.jormas.2020.12.008
10. Donohoe E. et al. A review of post-operative imaging of zygomaticomaxillary complex fractures without orbital floor reconstruction in University Hospital Galway // Advances in Oral and Maxillofacial Surgery. - 2021;3. https://doi.org/10.1016/j.adoms.2021.100092
11. Farber S.J. et al. Current management of zygomaticomaxillary complex fractures: a multidisciplinary survey and literature review // Craniomaxillofacial Trauma Reconstr. - 2016;9(4):313-322.
12. Halsey J.N., Hoppe I.C., Granick M.S., Lee E.S. A Single-Center Review of Radiologically Diagnosed Maxillofacial Fractures: Etiology and Distribution // Craniomaxillofac Trauma Reconstr. - 2017;10(1):44-47.
13. Harrington A.W. et al. External Validation of University of Wisconsin's Clinical Criteria for Obtaining Maxillofacial Computed Tomography in Trauma // J Craniofac Surg. - 2018;29:e167-e170.
14. Haworth S. et al. A clinical decision rule to predict zygomatico-maxillary fractures // J Cranio-Maxillofacial Surg. - 2017;45:1333-1337.
15. Latif K. et al. Post operative outcomes in open reduction and internal fixation of zygoma bone fractures: two point versus three point fixation // Pakistan oral Dent J. - 2017;37(4):523-530.
16. Willemink M.J., Noël P.B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence // Eur Radiol. - 2019;29:2185-2195.
17. McCormick R.S., Putham G. The management of facial trauma // Head and neck surgery. - 2018;36;10:587-594.
18. Metzger M.C., Schcn R., Tetzlaf R. et al. Topographical CT-data analysis of the human orbital floor // Int J Oral Maxillofac Surg. - 2007;36(1):45-53.
19. Nikunen M. et al. Implant malposition and revision surgery in primary orbital fracture reconstructions // J Cranio-Maxillofacial Surg. - 2021:1-8.
20. Ord R.A., El-Attar A. Acute retrobulbar hemorrhage complicating a malar fracture // J Oral Maxillofac Surg. - 1982;40(4):234-236.
21. Pyötsiä K., Lehtinen V., Toivari M., Puolakkainen T., Wilson M.L., Snäll J. Three-dimensional computer-aided analysis of 293 isolated blowout fractures - which radiological findings guide treatment decision? // Journal of Oral and Maxillofacial Surgery. - 2021. https://doi.org/10.1016/j.joms.2021.06.026
22. Sanjuan-Sanjuan A., Heredero-Jung S., Ogledzki M., Arévalo-Arévalo R., Dean-Ferrer A. Flattening of the orbital lower eyelid fat as a long-term outcome after surgical treatment of orbital floor fractures // J Oral Maxillofac Surg. - 2019.
23. Scolozzi P. et al. Are Inferior Rectus Muscle Displacement and the Fracture's Size Associated With Surgical Repair Decisions and Clinical Outcomes in Patients With Pure Blowout Orbital Fracture? // J Oral Maxillofac Surg. - 2020;78:2280.e1-2280.e10.
24. Timashpolsky A. et al. A prospective analysis of physical examination findings in the diagnosis of facial fractures: determining predictive value // Plast Surg (Oakville, Ont). - 2016;24:73-79.
25. Varjonen E.A. et al. Remember the vessels! Craniofacial fracture predicts risk for blunt cerebrovascular injury // J Oral Maxillofac Surg. - 2018;76:1509.e1-1509.e9.