Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
UDK 616.31 Стоматология. Заболевания ротовой полости и зубов
Subject. SLA and LCD 3D-printing technologies used in dentistry and maxillofacial prosthetics. Objectives. To compare and systematize SLA and LCD 3D printing devices and technologies available in the Russian Federation. To Print a prototype of the ear epithesis. Methodology. collection and analysis of available literature sources, systematization of the information received. Comparison of various 3D printers, recommendations for usage depending on the required tasks. 3D-Print of epithesis of the ear by using LCD technology. Results. SLA and LCD printing technologies are similar in a number of parameters we studied. LCD technology showed higher printing speed compared to SLA technology. At the same time, the accuracy of the product for all SLA printers turned out to be higher in comparison with the most accurate LCD technology printer. The cost of SLA printers is on average higher than LCD printers. The prototype of the epithesis of the auricle can be reproduced using LCD technology. Conclusion. Photopolymer 3D printers with SLA technology produce more detailed and sharper end products than LCD printers. Photopolymer 3D printers with SLA technology are slower than LCD technology. SLA and LCD technologies are quite close in certain parameters. LCD technology can be used at the stages of rehabilitation of patients with ear defects.
additive technologies, comparison of 3D printers, optimization of dentistry, computer 3D technologies in dentistry, prosthetic dentistry, prosthetic technologies in dentistry
1. Bobrovich K.A., Koksharova A.A. Obzor i sravnenie sovremennyh tehnologiy dlya 3D-pechati v stomatologii dostupnyh na territorii RF. Sbornik materialov 71 Itogovoy studencheskoy nauchnoy konferencii SNO im. L.I. Falina. 2023:79-80. [K.A. Bobrovich, A.A. Koksharova. Review and comparison of modern technologies for 3D printing in dentistry available in the Russian Federation. Collection of materials of the 71st Final Student Scientific Conference of the SSS named after. L.I. Falina. 2023:79-80. (In Russ.)]. https://www.msmsu.ru/science/molodyezhnaya-nauka/sborniki-tezisov-nauchnykh-konferentsiy/71.pdf
2. Vokulova Yu.A., Zhulev E.N. Rezul'taty izucheniya razmernoy tochnosti vremennyh iskusstvennyh koronok, izgotovlennyh s pomosch'yu subtraktivnyh i additivnyh tehnologiy. Norwegian Journal of Development of the International Science. 2020;44-1. [Yu.A. Vokulova, E.N. Zhulev. Results of studying the dimensional accuracy of temporary artificial crowns manufactured using subtractive and additive technologies. Norwegian Journal of Development of the International Science. 2020;44-1. (In Russ.)]. https://cyberleninka.ru/article/n/rezultaty-izucheniya-razmernoy-tochnosti-vremennyh-iskusstvennyh-koronok-izgotovlennyh-s-pomoschyu-subtraktivnyh-i-additivnyh
3. Gvetadze R.Sh., Timofeev D.E., Butova Valentina Gavrilovna, Zherebcov A.Yu., Andreeva S.N. Cifrovye tehnologii v stomatologii. Rossiyskiy stomatologicheskiy zhurnal. 2018;5. [R.Sh. Gvetadze, D.E. Timofeev, V.G. Butova, A.Yu. Zherebtsov, S.N. Andreeva. Digital technologies in dentistry. Russian dental journal. 2018;5. (In Russ.)]. https://cyberleninka.ru/article/n/tsifrovye-tehnologii-v-stomatologii
4. Zhulev E.N., Vokulova Yu.A. Izuchenie kachestva kraevogo prileganiya karkasov iskusstvennyh koronok iz disilikata litiya IPS e. Max, izgotovlennyh s pomosch'yu sovremennyh cifrovyh tehnologiy. The Scientific Heritage. 2020;46-3:46. [E.N. Zhulev, Yu.A. Vokulova. Study of the quality of marginal fit of artificial crown frames made of lithium disilicate IPS e. Max, made using modern digital technology. The Scientific Heritage. 2020;46-3:46. (In Russ.)]. https://cyberleninka.ru/article/n/izuchenie-kachestva-kraevogo-prileganiya-karkasov-iskusstvennyh-koronok-iz-disilikata-litiya-ips-e-max-izgotovlennyh-s-pomoschyu
5. Ibragim Emil' Rustam Ogly. Metod planirovaniya transgingival'noy dental'noy implantacii bez pomoschi additivnoy tehnologii. Vestnik Nacional'nogo mediko-hirurgicheskogo Centra im. N. I. Pirogova. 2012;4. [Ibrahim Emil Rustam Ogly. A method for planning transgingival dental implantation without the help of additive technology. Bulletin of the National Medical and Surgical Center named after. N.I. Pirogova. 2012;4. (In Russ.)]. https://cyberleninka.ru/article/n/metod-planirovaniya-transgingivalnoy-dentalnoy-implantatsii-bez-pomoschi-additivnoy-tehnologii
6. Ivanova V.A., Borisov V.V., Platonova V.V., Dan'shina S.D. Vysokaya tochnost' konstrukciy pri primenenii 3D-pechati v implantologii (obzor literatury). Aktual'nye problemy mediciny. 2020;1. [V.A. Ivanova, V.V. Borisov, V.V. Platonova, S.D. Danshina. High precision of structures when using 3D printing in implantology (literature review). Current problems of medicine. 2020;1. (In Russ.)]. https://cyberleninka.ru/article/n/vysokaya-tochnost-konstruktsiy-pri-primenenii-3d-pechati-v-implantologii-obzor-literatury
7. Iskenderov Ramil' Mazahirovich. Primenenie cad/cam-tehnologiy v zubotehnicheskoy laboratorii. Rossiyskiy stomatologicheskiy zhurnal. 2016;1. [R.M. Iskenderov. Application of cad/cam technologies in a dental laboratory. Russian dental journal. 2016;1. (In Russ.)]. https://cyberleninka.ru/article/n/primenenie-cad-cam-tehnologiy-v-zubotehnicheskoy-laboratorii
8. Karapetyan T.A., Perunov A.Yu. Tehnologiya CAD/CAM – ortopedicheskaya stomatologiya buduschego. BMIK. 2018;2. [T.A. Karapetyan, A.Yu. Perunov. CAD/CAM technology – prosthetic dentistry of the future. BMIK. 2018;2. (In Russ.)]. https://cyberleninka.ru/article/n/tehnologiya-cad-cam-ortopedicheskaya-stomatologiya-buduschego
9. Klemin V.A., Korzh V.I., Kalinovskiy D.K., Korzh D.V. Ispol'zovanie rezul'tatov izobretatel'skoy deyatel'nosti v rabote kafedry ortopedicheskoy stomatologii: cifrovye i additivnye tehnologii. Zhurnal telemediciny i elektronnogo zdravoohraneniya. 2020;4. [V.A. Klemin, V.I. Korzh, D.K. Kalinovsky, D.V. Korzh. Using the results of inventive activity in the work of the Department of Orthopedic Dentistry: digital and additive technologies. Journal of Telemedicine and eHealth. 2020;4. (In Russ.)]. https://cyberleninka.ru/article/n/ispolzovanie-rezultatov-izobretatelskoy-deyatelnosti-v-rabote-kafedry-ortopedicheskoy-stomatologii-tsifrovye-i-additivnye
10. Naumovich S.S., Razorenov A.N. SAD/Cam sistemy v stomatologii: sovremennoe sostoyanie i perspektivy razvitiya. Sovremennaya stomatologiya. 2016;4(65). [S.S. Naumovich, A.N. Razorenov. CAD/Cam systems in dentistry: current state and development prospects. Modern dentistry. 2016;4(65). (In Russ.)]. https://cyberleninka.ru/article/n/sad-cam-sistemy-v-stomatologii-sovremennoe-sostoyanie-i-perspektivy-razvitiya
11. Vokulova Yu.A. Razrabotka i vnedrenie cifrovyh tehnologiĭ pri ortopedicheskom lechenii s primeneniem nes'emnyh protezov zubov : avtoreferat dis. ... kandidata medicinskih nauk : 14.01.14. Nizhniĭ Novgorod, 2017:22. [Yu.A. Vokulova. Development and implementation of digital technologies in orthopedic treatment using fixed dental prostheses: abstract of thesis. ... candidate of medical sciences : 01/14/14. Nizhny Novgorod, 2017:22. (In Russ.)]. http://repo.tvergma.ru/393/2/avtoreferat.pdf
12. Stepanov V.A., Shemonaev V.I., Buyanov E.A., Grachev D.V., Parhomenko A.N., Zubreva I.A. Perspektivy izgotovleniya karkasov metallokeramicheskih konstrukciy zubnyh protezov metodom selektivnogo lazernogo spekaniya. Zdorov'e i obrazovanie v XXI veke. 2021;6. [V.A. Stepanov, V.I. Shemonaev, E.A. Buyanov, D.V. Grachev, A.N. Parkhomenko, I.A. Zubreva. Prospects for the manufacture of frameworks for metal-ceramic structures of dental prostheses using selective laser sintering. Health and education in the 21st century. 2021;6. (In Russ.)]. https://cyberleninka.ru/article/n/perspektivy-izgotovleniya-karkasov-metallokeramicheskih-konstruktsiy-zubnyh-protezov-metodom-selektivnogo-lazernogo-spekaniya
13. Barazanchi A., Li K.C., Al-Amleh B., Lyons K., Waddell J.N. Additive technology: update on current materials and applications in dentistry // Journal of Prosthodontics. – 2017;26(2):156-163. DOI:https://doi.org/10.1111/jopr.12510
14. Bilgin M.S., Baytaroglu E.N., Erdem A., Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication // European journal of dentistry. – 2016;10(2):286-291. doi:https://doi.org/10.4103/1305-7456.178304
15. Chockalingam K., Jawahar N., Chandrasekhar U. Influence of layer thickness on mechanical properties in stereolithography // Rapid Prototyping Journal. – 2006;12(2):106-113. doi:https://doi.org/10.1108/13552540610652456
16. Jeong Y.G., Lee W.S., Lee K.B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method // The journal of advanced prosthodontics. – 2018;10(3):245-251. DOI:https://doi.org/10.4047/jap.2018.10.3.245
17. Layani M., Wang X., Magdassi S. Novel materials for 3D printing by photopolymerization // Advanced Materials. – 2018;30:e1706344. DOI:https://doi.org/10.1002/adma.201706344
18. Liaw C.Y., Guvendiren M. Current and emerging applications of 3D printing in medicine // Biofabrication. – 2017;9:024102. DOI:https://doi.org/10.1088/1758-5090/aa7279
19. Pacquet W., Benoit A., Hatege-Kimana C., Wulfman C. Mechanical properties of CAD/CAM denture base resins // The International Journal of Prosthodontics. – 2019;32(1):104-106. doi:https://doi.org/10.11607/ijp.6025
20. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: a systematic literature review // Biomedical engineering online. – 2016;15:115. DOI:https://doi.org/10.1186/s12938-016-0236-4
21. Yueyi Tian, ChunXu Chen, Xiaotong Xu, Jiayin Wang, Xingyu Hou, Kelun Li, Xinyue Lu, HaoYu Shi, Eui-Seok Lee, Heng Bo Jiang. A Review of 3D Printing in Dentistry // Technologies, Affecting Factors, and Applications. DOI:https://doi.org/10.1155/2021/9950131