Abstract and keywords
Abstract (English):
Subject. Recent clinical studies have shown that implant placement is highly predictable using 3D computer-generated implant guides, but there is no clinical comparison between the body's response to trauma during a dental implant surgery. After bone surgery (implant placement), intracellular chemical signals trigger a suitable cellular response to external changes in order to develop specific and adaptive responses in tissues to external stimuli. The aim is to compare the severity of the release of matrix metalloproteinases in the oral cavity during dental implantation operations using implant templates and flapless techniques and using the standard technique. Collection and comparison of data on the possibility of using matrix metalloproteinases in saliva/oral fluid as a biomarker and predictor of the activity of healing and tissue remodeling during dental implantation. Methodology. The oral fluid of 22 patients was studied for the quantitative content of matrix metalloproteinases 2, 3, 9, 8, 12 before and after 3, 14 and 30 days after the dental implantation operation. All study participants were divided into two groups: control and experimental. In the control operation, it was carried out according to the standard technique with folding the muco-periosteal flap, in the experimental one - using implant templates according to the flapless technique. Results. The data obtained indicated a change in indicators in both groups. In the control group, there was a significant excess of indicators, which indicates a more pronounced reaction of the body. Conclusions. The positive influence of the use of implant templates in order to minimize trauma during the dental implantation operation was established.

precision, implant templates, dental implants, inflammation, matrix metalloproteinase 2, 3, 8, 9, 12

1. Bazarny, V. V., Polushina, L. G., Maksimova, A. Yu., Svetlakova, E. N., Mandra, Yu. V. (2018). Patogeneticheskoye obosnovaniye novykh podkhodov k otsenke sostoyaniya tkaney polosti rta pri khronicheskom generalizovannom parodontite [Pathogenetic substantiation of new approaches to assessing the state of the tissues of the oral cavity in chronic generalized periodontitis]. Problemy stomatologii [Actual problems in Dentistry], 14, 4, 14–18. (In Russ.)

2. Borovikov, V. (2003). STATISTICA: iskusstvo analiza dannykh na komp'yutere (s CD-ROM) [STATISTICA: the art of data analysis on a computer (with CD-ROM)]. 2, Piter. (In Russ.)

3. Vukolov, E. A. (2004). Osnovy statisticheskogo analiza. Praktikum po statisticheskim metodam i issledovaniyu operatsiy s ispol'zovaniyem paketov "Statistica" i "Excel" [Fundamentals of Statistical Analysis. Workshop on Statistical Methods and Operations Research Using "Statistica" and "Excel "packages]. Moscow : Forum, 464. (In Russ.)

4. Zholudev, S. E., Nersesyan, P. M. (2017.) Sovremennyye znaniya i klinicheskiye perspektivy ispol'zovaniya dlya pozitsionirovaniya dental'nykh implantatov khirurgicheskikh shablonov. Obzor literatury [Current knowledge and clinical prospects for the use of surgical templates for positioning dental implants. Literature review]. Problemy stomatologii [Actual problems in Dentistry], 4, 74–80. (In Russ.)

5. Zholudev, S. E., Nersesyan, P. M., Zholudev, D. S. (2016). Ispol'zovaniye 3D planirovaniya i khirurgicheskogo shablona dlya profilaktiki nepravil'noy ustanovki tsilindricheskikh implantatov v kostnoy tkani chelyustey [The use of 3D planning and a surgical template for the prevention of incorrect placement of cylindrical implants in the bone tissue of the jaws]. Problemy stomatologii [Actual problems in Dentistry], 2, 79–85. (In Russ.)

6. Nersesyan, P. M., Zholudev, S. E., Bazarny, V. V., Polushina, L. G., Maksimova, A. Yu., Zholudev, D. S. (2019). Laboratorno-klinicheskoye obosnovaniye atravmatichnosti ispol'zovaniya individual'nogo formirovatelya desny avtorskoy konstruktsii [Laboratory and clinical substantiation of the atraumatic nature of the use of an individual gingiva former of the author's design]. Problemy stomatologii [Actual problems in Dentistry], 15, 3, 96–102. (In Russ.)

7. Rebrova, O. (2002). Statisticheskiy analiz meditsinskikh dannykh. Primeneniye paketa prikladnykh programm STATISTICA [Statistical analysis of medical data. Application of the STATISTICA application package]. Moscow : Media Sphere. (In Russ.)

8. Khalafyan, A. A. (2007). STATISTISA 6. Statisticheskiy analiz dannykh [STATISTISA 6. Statistical data analysis]. 3, Moscow : Binom-Press, 512. (In Russ.)

9. Anitua, E., Murias-Freijo, A., Alkhraisat, M. H. (2016). Conservative implant removal for the analysis of the cause, removal torque, and surface treatment of failed nonmobile dental implants. J Oral Implantol, 42 (1), 69–77. 00207

10. Chang, Y., Lai, C., Yang, S., Chan, Y., Hsieh, Y. (2002). Stimulation of matrix metalloproteinases by black-pigmented Bacteroides in human pulp and periodontal ligament cell cultures. J Endod, 28, 90–93.

11. Delaissé, J. M., Engsig, M. T., Everts, V., del Carmen Ovejero, M., Ferreras, M., Lund, L. et al. (2000). Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta, 291, 223–234.

12. Devereux, G., Steele, S., Jagelman, T., Fielding, S., Muirhead, R., Brady, J. et al. (2014). An observational study of matrix metalloproteinase (MMP)-9 in cystic fibrosis. J Cyst Fibros, 13, 557–563.

13. Godefroy, E., Gallois, A., Idoyaga, J., Merad, M., Tung, N., Monu, N. et al. (2014). Activation of toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic-cell-mediated inflammatory responses. Cell Rep, 9, 1856–1870.

14. Heidi, P. (2003). Matrix Metalloprotienases (MMPs) and their Specific Tissue Inhibitors (TIMPs) in Mature Human Odontoblasts and Pulp Tissue: The Regulation of Expressions of Fibrillar Collagens, MMPs and TIMPs by Growth Factors, Transforming Growth Factor-[beta]1 (TGF-[beta]1) and Bone Morphogenic Protien-2 (BMP-2). Finland : Oulu University Press.

15. Jain, A., Bahuguna, R. (2015). Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J Oral Biol Craniofac Res, 5, 212–218.

16. Mazzoni, A., Papa, V., Nato, F., Carrilho, M., Tjäderhane, L., Ruggeri, A. Jr. et al. (2011). Immunohistochemical and biochemical assay of MMP-3 in human dentine. J Dent, 39, 231–237.

17. Muromachi, K., Kamio, N., Matsuki-Fukushima, M., Narita, T., Nishimura, H., Tani-Ishii, N. et al. (2015). Metalloproteases and CCN2/CTGF in dentin – Pulp complex repair. J Oral Biosci, 57, 86–90.

18. Nicoli, L. G., Oliveira, G. J., Lopes, B. M. V., Marcantonio, C., Zandim‐ Barcelos, D. L., Marcantonio, E. Jr. (2017). Survival/Success of den‐ tal implants with acid‐etched surfaces: A retrospective evaluation after 8 to 10 years. Brazilian Dental Journal, 28, 330–336. https://doi. org/10.1590/0103-6440201601471

19. Pozzi, A., Polizzi, G., Moy, P. K. (2016). Guided surgery with tooth‐supported templates for single missing teeth: A critical review. European Journal of Oral Implantology, 9, 1, S135–S153.

20. Raico Gallardo, Y. N., da Silva-Olivio, I. R. T., Mukai, E. et al. (2017). Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implants Res, 28 (5), 602–612.

21. Raico Gallardo, Y. N., da Silva‐Olivio, I. R. T., Mukai, E., Morimoto, S., Sesma, N., Cordaro, L. (2017). Accuracy comparison of guided surgery for dental implants according to the tissue of support: A systematic review and meta‐analysis. Clinical Oral Implants Research, 28, 602–612.

22. Shen, P., Zhao, J., Fan, L., Qiu, H., Xu, W., Wang, Y., Kim, Y. J. (2015). Accuracy evaluation of computer‐designed surgical guide template in oral implantology. Journal of Cranio‐Maxillofacial Surgery, 43, 2189– 2194.

23. Sorsa, T., Tjaderhane, L., Konttinen, Y. T. et al. (2006). Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Annals of Medicine, 38, 5, 306–321.

24. Sorsa, T., Ulvi, K., Nwhator, S. et al. (2016). Analysis of matrix metalloproteinases, especially MMP-8, in GCF, mouthrinse and saliva for monitoring periodontal diseases. Periodontology 2000, 70, 1, 142–163.

25. Soler Palacios, L., Estrada-Capetillo, E., Izquierdo, G., Criado, C., Nieto, C., Municio, I., Gonzalez-Alvaro, P., Sanchez-Mateos, J. L., Pablos, A. L. et al. (2015). Macrophages from the synovium of active rheumatoid arthritis exhibit an activin Adependent pro-inflammatory profile. J. Pathol, 235, 515–526.

26. Taschieri, S., Gehrke, S. A., Pazetto, M. K., De Oliveira, S., Corbella, S., Mardegan, F. E. (2014). Study of temperature variation in cortical bone during osteotomies with trephine drills. Clin. Oral. Investig, 18, 1749–1755.

27. Miši´C, T., Markovi´c, A., Miliˇci´c, B., Calvo-Guirado, J. L., Aleksi´c, Z., Ðini´c, A. (2013). Heat generation during implant placement in low-density bone: Effect of surgical technique, insertion torque and implant macro design. Clin. Oral Implants Res, 24, 798–805.

28. Kumar, T., Chaudhry, I., Reid, M. B., Boriek, A. M. (2002). Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J. Biol. Chem, 277, 46493–46503.

29. Berglundh, T., Abrahamsson, I., Lang, N. P., Lindhe, J. (2003). De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res, 14, 251–262.

30. Salvi, G. E., Bosshardt, D. D., Huynh-Ba, G., Ivanovski, S., Donos, N., Lang, N. P. (2011). The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res, 22, 357–364.