THE LABORATORY STUDY OF THE FLEXURAL STRENGTH OF REINFORCED BIS-ACRYLIC MATERIAL FOR PROVISIONAL FIXED RESTORATIONS
Abstract and keywords
Abstract (English):
Background. The use of provisional (interim, temporary) restorations has become a routine procedure in modern dentists after the end of the era of brazed-stamped bridges. The use of traditional acrylic plastics does not provide the necessary strength for the long-term functioning of provisional prostheses. Bis-acrylic materials have helped to eliminate some of the problems associated with traditional acrylic materials. However the disadvantage of bis-acryls is that they can break relatively easily when placed in areas of increased stress. The use of provisional prostheses, obtained by casting or CAD/CAM technology, undoubtedly solve problems, however, prosthetics are significantly more expensive. Another known and cheaper way is to harden polymers by reinforcing them. Objectives ― to study, when conducting a mechanical test, the fracture resistance of glass fiber-reinforced bis-acrylic composite beams. Methods. On a universal testing machine (three-point flexural test), 8 groups of samples were studied depending on the material — Re-fine Bright acrylic material (Yamahachi Dental MFG., CO., Japan), or Luxatemp bis-acrylic material (DMG) and Protemp 4 (3M ESPE), and also, the method of reinforcement of Protemp 4 with GlasSpan fiberglass tape (GlasSpan). The fracture strength (F) was calculated in MPa. Statistical differences between groups were determined using T-test. Results. Comparison of the fracture strengths results between the first control group (Protemp 4 bis-acrylic plastic without reinforcement) and other groups (glass tape reinforcement) revealed a significant hardening of Protemp 4 after reinforcement (p <0,05). Conclusions. The use of reinforcing glass tape with a full impregnation with an adhesive and a flowable composite increases the strength of Protemp 4 more than 2 times.

Keywords:
acrylates, bis-acrylates, glass fiber reinforcement, sample beams, flexural strength (fracture resistance)
Text
Publication text (PDF): Read Download

Введение

Использование провизорных протезов стало рутинной процедурой у современных ортопедов-стоматологов [1, 3―10]. Это произошло после заката эры штампованно-паяных  конструкций и вытеснения их металлокерамическими или цельнокерамическими мостовидными протезами, требующими защиты препарированных зубов и зубных рядов на период изготовления постоянных конструкций. Традиционным материалом для изготовления провизорных коронок и мостовидных протезов является полиметилметакрилат, привлекающий своей дешевизной и возможностью коррекции, но также характеризующийся множеством недостатков (значительной полимеризационной усадкой, наличием остаточного мономера (токсико-аллергическое действие), низкой прочностью и т.д.) [2, 12].  

Разработка бис-акриловых композиционных пластмасс благодаря повышенной твердости, меньшей аллергенности, высокой точности и удобству применения  во многом решила проблемы временного протезирования [14, 28]. Однако провизорные протезы из бис-акрилатов не способны выдерживать повышенные либо длительные функциональные нагрузки.

При наличии множества способов усиления провизорных протезов [11, 13, 14, 17―27] мы не нашли методики, позволяющей непосредственно врачу одномоментно выполнить армирование протеза из бис-акрилата.

Для повышения прочности провизорных мостовидных протезов из бис-акриловой  пластмассы был запатентован "Способ изготовления временных несъемных зубных протезов" № 2544098 от 04.02.2015, где предложено армировать стекловолокном бис-акриловую композиционную пластмассу в процессе прямого изготовления провизорного мостовидного протеза.

Цель исследования ― изучить при проведении механического испытания прочность на изгиб балок из бис-акриловой композиционной пластмассы, армированных стекловолокном. 

Материалы и методы

Для лабораторного определения усилий разрушения балок-образцов методом трехточечного изгиба (ГОСТ 31574―2012)  с помощью специальной формы, состоящей из нескольких элементов, изготавливали экспериментальные образцы размерами 2,0±0,1 х 2,0±0,1 х 25±2 мм из самотвердеющей бис-акриловой пластмассы ProtempTM4 (3М) с помещенной внутрь стеклолентой GlasSpan либо без нее (контроль). Дальнейшие испытания заключались в нагружении балок до появления видимых разрушений (рис. 1). При этом фиксировали максимальную нагрузку, которую выдерживал образец. Расстояние между центрами опор составляло 20±0,1 мм. Нагрузку прикладывали на одинаковом расстоянии от центров опор. Механические исследования проводили на испытательной машине FPZ 10-1 «Fritz-Heskert» (Германия), обеспечивающей скорость перемещения траверсы 0,75±0,25 мм/сек. На циферблате машины фиксировалась максимальная нагрузка в ньютонах (Н), соответствующая усилию разрушения образца. После высчитывания среднеарифметических значений разрушающих усилий (M) и отклонения средней (m) с переводом абсолютных значений (Н) в относительные (МПа) проводили статистическое сравнение групп с помощью параметрического критерия Стьюдента (Т).

Рис. 1. Схема испытаний на трехточечный изгиб

Fig. 1. Three-point bending test diagram

Для проведения данного эксперимента нами было всего изготовлено 65 балок-образцов, среди которых выделили 8 групп (от 4-х до 10-ти в каждой).

Материал, характер армирования и алгоритм изучаемых групп: Protemp 4 (контроль); Protemp 4 + стеклолента (GlasSpan) + адгезив (Singlebond) + жидкотекучий СТК (Filtek flow); Protemp 4 + стеклолента (GlasSpan) + адгезив (Single–bond, 3M);  Protemp 4 + стеклолента (GlasSpan) + ангидрин + жидкотекучий СТК (Filtek flow);  Protemp 4 + стеклолента (GlasSpan) + адгезив (Single–bond) + жидкотекучий СТК (Filtek flow) с предварительным засвечиванием галогеновым светом; Protemp 4 + стеклолента (GlasSpan) + адгезив (Single–bond) с предварительным засвечиванием; Luxatemp (DMG) (без армирования); Re-fine Acrylic (Yamahachi)  (без армирования).

Результаты

Удельная сила разрушения на изгиб (М) балок для указанных групп указана в табл. 

Таблица 

Относительная прочность на изгиб балок из бис-акриловой  и акриловой пластмассы

Table. Results of the relative flexural strength of the beams made of bis-acrylic and  acrylic resin

группы

Число

образцов (шт.)

Средняя сила (M)

разрушения (МПа)

Отклонение

средней (m)

1

10

130,1

2,6

2

10

278,3

2,6

3

4

177,4

9,4

4

4

228,0

6,4

5

10

243,8

4,9

6

6

91,9

4,1

7

10

133,1

4,9

8

9

92,7

3,5

Ориентиром для последующего сравнения послужила прочность образцов контрольной группы (№ 1) из бис-акрилата Protemp 4 без армирования ― 130,1±2,6 МПа. Наибольшие значения прочности на изгиб показали образцы группы № 2 с полноценной пропиткой армирующей стеклоленты адгезивом (бондом) и жидкотекучим композитом ― 278,3 ±2,6 МПа. Обращаем внимание на то, что светополимеризация СТК с адгезивом в данном случае проводилась сквозь пластмассу уже изготовленной балки. Предварительная же светополимеризация стекловолоконной арматуры, пропитанной адгезивом и СТК (группа № 5), оказалась менее эффективной ― 243,8 ± 4,9 МПа. Различия статистически достоверны.

Попытки исключить жидкотекучий СТК, оставив лишь адгезив, натолкнулись на технические сложности, а именно: неполимеризованный адгезив ингибировал самополимеризацию бис-акрилата (группа № 3), что приводило к непредсказуемому и нестабильному результату, хотя она и усиливала балку, ― 177,4±9,4 МПа, а предварительная светополимеризация адгезива (группа № 6) даже ослабляла ее ― 91,9± 4,1 МПа, видимо, вследствие вероятности образования пор на границе между стекловолокном и бис-акрилатом.

Замена адгезива, ингибирующего бис-акрилат, на обработку extempore ангидрином (группа № 4) существенно усиливала балку ― 228,0 ±6,4 МПа, однако также статистически значимо уступала балке с полноценной пропиткой (группа № 2).

На представленной далее диаграмме (рис. 2) демонстрируется визуальное сравнение шести основных групп (кроме № 4 и 6).

Рис. 2. Визуальная оценка относительной прочности (МПа) балок из групп  № 1, 2, 3, 5, 7 и 8

Fig. 2. Visual assessment of the relative flexural strength (MPa) of beams from groups No. 1, 2, 3, 5, 7 and 8

Среди проведенных исследований выделяются две группы, в которых балки выполнены из других материалов. В группе № 7 ― это материал, подобный Protemp 4         (3М), ― бис-акрилат Luxatemp (DMG). Прочность балок из Luxatemp оказалась аналогичной (с отсутствием статистической разницы) Protemp 4 ― 133,1± 4,9 МПа.  Однако балки из Luxatemp оказались существенно менее жесткими в течение получаса после их изготовления. Поэтому для большего удобства при манипуляциях мы продолжили исследования именно с Protemp 4.

Наконец, в группе № 8 были исследованы балки из самотвердеющей акриловой пластмассы Re-fine Acrylic (Yamahachi), используемой для непрямого изготовления провизорных протезов. Полученные результаты показали существенно меньшие значения прочности даже по сравнению с неармированным бис-акрилатом Protemp 4 ― 92,7 ± 3,5 МПа.

Сравнение значений, полученных в группах, показало статистически значимые различия по критерию Стьюдента (Т) между всеми группами, кроме № 2 и 5 (p>0,05). Так, T (1-2) = 40,0;  T (1-3) = 4,8;  T (2-3) = 10,3;  T (2-4) = 7,3;  T (1-5) = 20,2; T (2-5) =  6,25; T (1-6) =  7,8 (p< 0,001);  T (3-4) =  4,3 (p<0,01).

Выводы

1. Сравнение результатов прочности на изгиб между 1-й контрольной  (бис-акриловая пластмасса Protemp 4 без армирования) и другими (армирование стеклолентой) группами выявило существенное упрочнение пластмассы после армирования.

 2. Использование армирующей стеклоленты с полноценной пропиткой адгезивом и жидкотекучим композитом повышает прочность бис-акриловой пластмассы более чем в 2 раза.

Известный эффект армирования полимеров может быть применим для бис-акриловой композиционной пластмассы, но требует дальнейшего изучения в клинике.

References

1. Arutyunov, S. D., Yanushevich, O. O., Lebedenko, A. I., Arutyunov, D. S., Arutyunov, A. C., Trezubov, V. V., Shirokov, I. YU. Sposob vremennogo protezirovaniya nes`yemnymi mostovidnymi zubnymi protezami na dental'nykh implantatakh [The method of temporary prosthetics with fixed bridges on dental implants : pat. 2432924 Russian Federation]. 31, 698. (In Russ.)

2. Arutyunov, S. D., Yeroshin, V. A., Perevezentseva, A. A., Boyko, A. V., Shirokov, I. YU. (2010). Kriterii prochnosti i dolgovremennosti vremennykh nes"yemnykh zubnykh protezov [Strength and long-term criteria for temporary non-removable dentures]. Institut stomatologii [Institute of Dentistry], 4, 84-85. (In Russ.)

3. Babunashvili, G. B. (2007). Kliniko-laboratornoye obosnovaniye primeneniya materiala «Akrodent» dlya vremennykh zubnykh protezov [Clinical and laboratory substantiation of the use of the material "Akrodent" for temporary dentures : authoref. Diss. ... cand. med. science]. Moscow. (In Russ.)

4. Belousov, N. N. (2009). Opredeleniye effektivnosti shinirovaniya zubov pri tyazhelykh formakh vospalitel'nykh zabolevaniy parodonta [Determination of the effectiveness of splinting teeth in severe forms of inflammatory periodontal diseases]. Parodontologiya [Periodontics], 3, 41-44. (In Russ.)

5. Byuking, V. (2007). Stomatologicheskaya sokrovishchnitsa [Dental treasury]. Moscow, Barcelona, Berlin, Bombay, Warsaw, London, Milan, Paris, Beijing, Prague, Sao Paulo, Seoul, Istanbul, Tokyo, Chicago : Quintessence. (In Russ.)

6. Nikolayenko, S. A., Dasch, W., Stepanov, Ye. S. (2006). Issledovaniye ustalosti sovremennykh materialov dlya vremennykh mostov i koronok [Study of the fatigue of modern materials for temporary bridges and crowns]. Stomatologiya dlya vsekh [Dentistry for all], 4, 32-35. (In Russ.)

7. Nikolayenko, S. A., Stepanov, Ye. S. (2008). Klinicheskaya otsenka primeneniya samotverdeyushchikh plastmass dlya vremennykh mostovidnykh protezov i koronok [Clinical evaluation of the use of self-hardening plastics for temporary bridges and crowns]. Institut stomatologii [Institute of Dentistry], 1 (38), 64-67. (In Russ.)

8. Lebedenko, I. YU., Arutyunov, S. D., Ryakhovskiy, A. N. eds. (2016). Ortopedicheskaya stomatologiya [Prosthetic dentistry : national leadership]. Moscow : GEOTAR-Media. (In Russ.)

9. Petrikas, O. A., Voroshilin, YU. G., Petrikas, I. V. (2013). Vliyaniye konstruktsii opornogo elementa na prochnost' volokonno-kompozitnogo adgezivnogo mostovidnogo proteza s odnostoronney oporoy [The influence of the design of the support element on the strength of the fiber-composite adhesive bridge with a one-sided support]. Stomatologiya [Dentistry], 92, 2, 36-39 (In Russ.)

10. Smit, B., Khou, L. (2010). Koronki i mostovidnyye protezy v ortopedicheskoy stomatologii [Crowns and bridges in prosthetic dentistry]. Moscow : MEDpress-inform. (In Russ.)

11. Shillinburg-mladshiy, G., Khobo, S., Uinsett, L., Yakobi, R., Brakett, S. (2011). Osnovy nes`yemnogo protezirovaniya [Fundamentals of fixed prosthetic]. Moscow, Barcelona, Berlin, Warsaw, London, Milan, Mumbai, Paris, Beijing ,. Prague, Sao Paulo, Seoul, Istanbul, Tokyo, Chicago : Quintessence. (In Russ.)

12. Fahmy, N. Z., Sharawi, A. (2009). Effect of two methods of reinforcement on the fracture strength of interim fixed partial dentures. J Prosthodont, 18 (6), 512-520. doi:https://doi.org/10.1111/j.1532-849X.2009.00468.x.

13. Garoushi, S, Vallittu, P. K., Lassila, L. V. (2007). Use of short fiber-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures. J Dent, 35 (5), 403-408.

14. Garoushi, S. K., Vallittu, P. K., Lassila, L. V. (2008). Short glass fiber-reinforced composite with a semi-interpenetrating polymer network matrix for temporary crowns and bridges. J Contemp Dent Pract, 1, 9 (1). 14-21.

15. Geerts, G. A., Overturf, J. H., Oberholzer, T. G. (2008). The effect of different reinforcements on the fracture toughness of materials for interim restorations. J Prosthet Dent, 99 (6). 461-467. doi:https://doi.org/10.1016/S0022-3913(08)60108-0.

16. Gegauff, A. G., Wilkerson, J. J. (1995). Fracture toughness testing of visible light- and chemical-initiated provisional restoration resins. Int J Prosthodont, 8 (1), 62-68.

17. Hamza, T. A., Rosenstiel, S. F., Elhosary, M. M., Ibraheem, R. M. (2004). The effect of fiber reinforcement on the fracture toughness and flexural strength of provisional restorative resins. J Prosthet Dent, 91 (3), 258-264.

18. Hansen, P. A., Sigler, E., Husemann, R. H. (2009). Making multiple predictable single-unit provisional restorations using an indirect technique. J Prosthet Dent, 102 (4), 260-263. doi:https://doi.org/10.1016/S0022-3913(09)60167-0.

19. Hernandez, E. P., Oshida, Y., Platt, J. A., Andres, C. J., Barco, M. T., Brown, D. T. (2004). Mechanical properties of four methylmethacrylate-based resins for provisional fixed restorations. Biomed Mater Eng, 14 (1). 107-122.

20. Keyf, F., Uzun, G., Mutlu, M. (2003). The effects of HEMA-monomer and air atmosphere treatment of glass fibre on the transverse strength of a provisional fixed partial denture resin. J Oral Rehabil, 30 (11), 1142-1148.

21. Keys, W. F., Keirby, N., Ricketts, D. N. J. (2016). Provisional Restorations - A Permanent Problem? Dent Update, 43 (10), 908-912.

22. Panyayong, W., Oshida, Y., Andres, C. J., Barco, T. M., Brown, D. T., Hovijitra, S. (2002). Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties. Biomed Mater Eng, 12 (4), 353-366.

23. Reshad, M., Cascione, D., Kim, T. (2010). Anterior provisional restorations used to determine form, function, and esthetics for complex restorative situations, using all-ceramic restorative systems. J Esthet Restor Dent, 22 (1), 7-16. doi:https://doi.org/10.1111/j.1708-8240.2009.00305.x.

24. Rosentritt, M., Behr, M., Lang, R., Handel, G. (2004). Flexural properties of prosthetic provisional polymers. Eur J Prosthodont Restor Dent, 12 (2), 75-79.

25. Samadzadeh, A., Kugel, G., Hurley, E., Aboushala, A. (1997). Fracture strengths of provisional restorations reinforced with plasma-treated woven polyethylene fiber. J Prosthet Dent, 78 (5), 447-450.

26. Stawarczyk, B., Schmutz, F., Fischer, J., Hämmerle, C. H. F. (2010). Abrasionsbeständigkeit von Provisorien-Kunststoffen: sind CAD/CAMKunststoffe abrasionsbeständiger? Quintessenz Zahntechnik, 36 (7), 954-962.

27. Zuccari, A. G., Oshida, Y., Miyazaki, M., Fukuishi, K., Onose, H., Moore, B. K. (1997). Reinforcement of acrylic resins for provisional fixed restorations. Part II: Changes in mechanical properties as a function of time and physical properties. Biomed Mater Eng, 7 (5), 345-355.

28. Zuccari, A. G., Oshida, Y., Moore, B. K. (1997). Reinforcement of acrylic resins for provisional fixed restorations. Part I: Mechanical properties. Biomed Mater Eng, 7 (5), 327-343.


Login or Create
* Forgot password?