from 01.01.2008 until now
Tyumen', Russian Federation
employee
Tyumen, Tyumen, Russian Federation
student
Tyumen, Tyumen, Russian Federation
student
Tyumen, Tyumen, Russian Federation
student
Tyumen, Tyumen, Russian Federation
UDC 616.31
Subject. This work discusses the types of artificial intelligence used in medicine in foreign countries and Russia, providing information on methods of filling the artificial intelligence information base. It presents statistics on errors made by doctors, particularly dentists, which can potentially be avoided by implementing and training in the use of artificial intelligence in their field. AI-based systems can be used to create simulators that help students practice skills in a safe environment. The Aim. To provide an overview of programs available on the international dental market that are built on the capabilities of artificial intelligence. To examine their significance, functionality, and the criticality of permissible errors. To analyze existing programs, their development process, and methods of AI training. Methodology. A review of modern scientific and methodological literature was conducted using scientific library databases PubMed, JCDA, and Frontiersin. A total of 30 sources published between 2019 and 2025 were reviewed. Conclusions. According to international research, the use of artificial intelligence in dental practice helps reduce errors by 5-15%, improves the accuracy of X-ray analysis to up to 100%, increases analysis speed by 6–10 times, enhances pathology detection accuracy to 72–95.67%, and improves periodontal disease classification accuracy to 82–87%. AI assists in developing personalized treatment plans, becoming a tool that shifts the dentist’s role toward data interpretation and strategic treatment planning. It facilitates early disease detection, optimizes administrative processes, and increases work efficiency. However, there is a risk of AI application without proper human oversight. Despite these benefits, AI does not eliminate errors and risks such as data leaks, cyberattacks, and unauthorized access.
artificial intelligence, diagnostics, personalization of treatment, optimization, errors and risks
1. Khanagar S.B., Al-ehaideb A., Maganur P.C., Vishwanathaiah S., Patil S., Baeshen H.A. et al. Developments, application, and performance of artificial intelligence in dentistry—a systematic review. Journal of dental sciences. 2021;16(1):508-522. https://doi.org/10.1016/j.jds.2020.06.019
2. Briganti G., Le Moine O. Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in medicine (Lausanne). 2020;7:27. https://doi.org/10.3389/fmed.2020.00027
3. He J., Baxter S.L., Xu J., Xu J., Zhou X., Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nature medicine. 2019;25(1):30-6. https://doi.org/10.1038/s41591-018-0307-0
4. Ray S. A quick review of machine learning algorithms. International conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEEXplore. http://dx.doi.org/10.1109/COMITCon.2019.8862451
5. Ting Sim J.Z., Fong Q.W., Huang W., Tan C.H. Machine learning in medicine: What clinicians should know. Singapore medical journal. 2023;64(2):91-97. https://doi.org/10.11622/smedj.2021054
6. Castiglioni I., Rundo L., Codari M., Di Leo G., Salvatore C., Interlenghi M. et al. AI applications to medical images: from machine learning to deep learning. Physica medica. 2021;83:9-24. https://doi.org/10.1016/j.ejmp.2021.02.006
7. AbuSalim S., Zakaria N., Islam M.R., Kumar G., Mokhtar N., Abdulkadir S.J. Analysis of deep learning techniques for dental informatics: a systematic literature review. Healthcare. 2022;10(10):1892. https://doi.org/10.3390/healthcare10101892
8. Kaul V., Enslin S., Gross S.A. History of artificial intelligence in medicine. Gastrointestinal endoscopy. 2020;92(4):807-812. https://doi.org/10.1016/j.gie.2020.06.040
9. Farook T.H., Jamayet N.B., Abdullah J.Y., Alam M.K. Machine learning and intelligent diagnostics in dental and orofacial pain management: a systematic review. Pain research & management. 2021;2021:6659133. https://doi.org/10.1155/2021/6659133
10. Serikova O.V., El'kova N.L., Soboleva N.A., Scherbachenko O.I. Primenenie neyrosetevyh tehnologiy dlya differencial'noy diagnostiki tyazhelyh zabolevaniy s proyavleniyami v polosti rta. Vestnik novyh medicinskih tehnologiy. Elektronnoe izdanie. 2019;(5):39-46. [Serikova O.V., El'kova N.L., Soboleva N.A., Shcherbachenko O.I. Application of neural network technology for differential diagnosis of severe diseases with manifestations in the oral cavity. Journal of New Medical Technologies. 2019;(5):39-46. (In Russ.)]. https://www.elibrary.ru/item.asp?id=41211788
11. Khanagar S.B., Al-Ehaideb A., Vishwanathaiah S., Maganur P.C., Patil S., Naik S. et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making—a systematic review. Journal of dental sciences. 2021;16(1):482-492. https://doi.org/10.1016/j.jds.2020.05.022
12. Lee S.J., Chung D., Asano A., Sasaki D., Maeno M., Ishida Y. et al. Diagnosis of Tooth Prognosis Using Artificial Intelligence. Diagnostics. 2022;12(6):1422. https://doi.org/10.3390/diagnostics12061422
13. Patil S., Albogami S., Hosmani J., Mujoo S., Kamil M.A., Mansour M.A. et al. Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls. Diagnostics. 2022;12(5):1029. https://doi.org/10.3390/diagnostics12051029
14. Cho J.H., Çakmak G., Yi Y., Yoon H.I., Yilmaz B., Schimmel M. Tooth morphology, internal fit, occlusion and proximal contacts of dental crowns designed by deep learning-based dental software: a comparative study. Journal of dentistry. 2024;141:104830. https://doi.org/10.1016/j.jdent.2023.104830
15. Yamaguchi S., Lee C., Karaer O., Ban S., Mine A., Imazato S. Predicting the debonding of cad/cam composite resin crowns with ai. Journal of dental research. 2019;98(11):1234-1238. https://doi.org/10.1177/0022034519867641
16. Wenzel A., Hintze H., Kold L.M., Kold S. Accuracy of computer-automated caries detection in digital radiographs compared with human observers. European journal of oral sciences. 2002;110(3):199-203. https://doi.org/10.1034/j.1600-0447.2002.21245.x
17. Aminoshariae A., Kulild J., Nagendrababu V. Artificial intelligence in endodontics: current applications and future directions. Journal of endodontics. 2021;47(9):1352-1357. https://doi.org/10.1016/j.joen.2021.06.003
18. Ahmed Z.H., Almuharib A.M., Abdulkarim A.A., Alhassoon A.H., Alanazi A.F., Alhaqbani M.A. et al. Artificial intelligence and its application in endodontics: a review. The journal of contemporary dental practice. 2023;24(11):912-917. https://doi.org/10.5005/jp-journals-10024-3593
19. Hadj Saïd M., Le Roux M.K., Catherine J.H., Lan R. Development of an Artificial Intelligence Model to Identify a Dental Implant from a Radiograph. The International journal of oral & maxillofacial implants. 2020;36(6):1077-1082. https://doi.org/10.11607/jomi.8060
20. Sukegawa S., Yoshii K., Hara T., Yamashita K., Nakano K., Yamamoto N. et al. Deep neural networks for dental implant system classification. Biomolecules. 2020;10(7):984. https://doi.org/10.3390/biom10070984
21. Alqutaibi A.Y., Algabri R.S., Elawady D., Ibrahim W.I. Advancements in artificial intelligence algorithms for dental implant identification: A systematic review with meta-analysis. The Journal of prosthetic dentistry. 2023. Article in Press. https://doi.org/10.1016/j.prosdent.2023.11.027
22. Loftus T.J., Altieri M.S., Balch J.A., Abbott K.L., Choi J., Marwaha J.S. et al. Artificial intelligence-enabled decision support in surgery: State-of-the-art and future directions. Annals of surgery. 2023;278(1):51-58. https://doi.org/10.1097/SLA.0000000000005853
23. Malahova N.E., Silin A.V., Shmatko A.D., Padun B.S. Povyshenie effektivnosti ortodonticheskogo lecheniya zubochelyustnyh anomaliy s ispol'zovaniem informacionnyh sistem. Vestnik Severo-Zapadnogo gosudarstvennogo medicinskogo universiteta im. I. I. Mechnikova. 2019;10(4):23-30. [Malahova N.E., Silin A.V., Shmatko A.D., Padun B.S. Improving the efficiency of orthodontic treatment of dentofacial anomalies using information systems. HERALD of North-Western State Medical University named after I.I. Mechnikov. 2019;10(4):23-30. (In Russ.)]. https://doi.org/10.17816/mechnikov201810423-30
24. Tuturov N.S., Oborotistov N.Yu., Ivanov S.S., Al' Haffar Zh.M.B. Razrabotka web-interfeysa dlya avtomatizirovannogo cefalometricheskogo analiza pryamyh i bokovyh telerentgenogramm. V: Stomatologiya slavyanskih gosudarstv: sbornik trudov HIV Mezhdunarodnoy nauchno-prakticheskoy konferencii; Belgorod; 08–12 noyabrya 2021 goda. Belgorod: Izdatel'skiy dom "Belgorod"; 2021. S. 283-284. [Tuturov N.S., Obortistov N.Yu., Ivanov S.S., Al Khaffar J.M.B. Development of a web interface for automated cephalometric analysis of forward and lateral telerentgenograms. In: Dentistry of the Slavic States: proceedings of the XIV International Scientific and Practical Conference; Belgorod; November 08-12, 2021. Belgorod: Belgorod Publishing House; 2021. P. 283-284. (In Russ.)]. https://www.elibrary.ru/item.asp?id=49047636
25. Xie X., Wang L., Wang A. Artificial Neural Network Modeling for Deciding if Extractions Are Necessary Prior to Orthodontic Treatment. The Angle orthodontist. 2010;80(2):262-266. https://doi.org/10.2319/111608-588.1
26. NII organizacii zdravoohraneniya i medicinskogo menedzhmenta. Iskusstvennyy intellekt v mirovom zdravoohranenii. Ot nachala do nashih dney. Moskovskaya medicina. 2024;(1). https://niioz.ru/moskovskaya-meditsina/zhurnal-moskovskaya-meditsina/tema-nomera/iskusstvennyy-intellekt-v-mirovom-zdravookhranenii-ot-nachala-do-nashikh-dney-/
27. Pethani F. Promises and perils of artificial intelligence in dentistry. Australian dental journal. 2021;66(2):124-135. https://doi.org/10.1111/adj.12812
28. Schwendicke F., Samek W., Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. Journal of dental research. 2020;99(7):769-774. https://doi.org/10.1177/0022034520915714
29. Imameeva R.D. Riski sozdaniya i funkcionirovaniya iskusstvennogo intellekta v medicine. Vestnik Moskovskogo universiteta imeni S.Yu. Vitte. Seriya 2. Yuridicheskie nauki. 2021;(1):33-40. [Imameeva R.D. The risks of creation and functioning of artificial intelligence in medicine. Journal of Legal Sciences. 2021;(1):33-40. (In Russ.)]. https://doi.org/10.21777/2587-9472-2021-1-33-40
30. Ahmed N., Abbasi M.S., Zuberi F., Qamar W., Halim M.S.B., Maqsood A. et al. Artificial intelligence techniques: analysis, application, and outcome in dentistry-a systematic review. BioMed research international. 2021;2021:9751564. https://doi.org/10.1155/2021/9751564



