ARTIFICIAL INTELLIGENCE IN PROSTHODONTICS (LITERATURE REVIEW)
Abstract and keywords
Abstract (English):
Background data. This study reviews contemporary scientific literature addressing a critical issue in dentistry: enhancing the quality of prosthetic treatment through the integration of artificial intelligence (AI) technologies. Subject. In prosthodontics, artificial intelligence represents a cutting-edge technology capable of accurately analyzing clinical data, utilizing trained algorithms for diverse tasks (e.g., identifying preparation margins, planning prosthetic treatments, designing restorations), and adapting solutions to specific clinical conditions and rehabilitation requirements. Objective. To evaluate the potential of AI in improving the efficiency and accuracy of dental and maxillofacial prosthetics through analysis of scientific literature published between 2017 and 2025. Materials and Methods. The methodology included analysis of 54 publications covering innovative approaches to diagnosis, treatment planning, and fabrication of high-precision prosthetic restorations using neural network models and machine learning algorithms. Results. While AI-based image processing is well-established in medicine, dentistry is undergoing its own digital evolution driven by CAD/CAM technologies. A significant recent trend is the integration of AI. In prosthodontics, AI enables automation of routine procedures, paving the way for breakthroughs in diagnostic accuracy, treatment planning, and fabrication of both fixed and removable prostheses, ultimately elevating the quality of prosthetic rehabilitation. Conclusions. Significant advantages of AI in prosthodontics were identified: automated treatment planning, optimization of key rehabilitation stages (efficient processing of CBCT images/3D scans, selection of restoration design/color, implant positioning), reducing treatment time without compromising accuracy. Algorithm refinement, enhanced precision, and development of novel data processing methods are required.

Keywords:
artificial intelligence, machine learning, neural networks, prosthodontics, dental prosthetics, dental implantation
References

1. Neznamov A.V. Pravovye aspekty realizacii nacional'noy Strategii razvitiya iskusstvennogo intellekta do 2030 goda. Vestnik Universiteta imeni O. E. Kutafina. 2019;(12):82-88. [Neznamov A.V. Legal aspects of the implementation of the National strategy for the development of artificial intelligence until 2030. Courier of the Kutafin Moscow State Law University. 2019;(12):82-88. (In Russ.)]. https://www.elibrary.ru/item.asp?id=41880086

2. Lindigrin A.N. Iskusstvennye neyronnye seti kak osnova glubinnogo obucheniya. Izvestiya TulGU. Tehnicheskie nauki. 2019;(12):468-472. [Lindigrin A.N. Deep learning technologies in neural networks. Izvestiâ Tulʹskogo gosudarstvennogo universiteta. Tehničeskie nauki. 2019;(12):468-472. (In Russ.)]. https://elibrary.ru/item.asp?id=41746234

3. Rugina I.A. Analiz izmeneniy praktiki stomatologicheskogo ortopedicheskogo lecheniya i ego rezul'tatov v regionah Rossii za 10-letniy period; dissertaciya na soiskanie uchenoy stepeni kandidata medicinskih nauk. Moskva; 2022. 158 s. [Rugina I.A. Analysis of changes in the practice of dental orthopedic treatment and its results in the regions of Russia over a 10-year period; dissertation for the degree of Candidate of Medical Sciences. Moscow; 2022. 158 p. (In Russ.)].

4. Muraev A.A., Kibardin I.A., Oborotistov N.Yu., Ivanov S.S., Ivanov S.Yu., Persin L.S. Ispol'zovanie neyrosetevyh algoritmov dlya avtomatizirovannoy rasstanovki cefalometricheskih tochek na telerentgenogrammah golovy v bokovoy proekcii. Rossiyskiy elektronnyy zhurnal luchevoy diagnostiki. 2018;8(4):16-22. [Muraev A.A., Kibardin I.A., Oborotistov N.Yu., Ivanov S.S., Ivanov S.Yu., Persin L.S. Use of neural network algorithms for the automated arrangement of cephalometric markers on lateral cefalograms. Russian Electronic Journal of Radiology. 2018;8(4):16-22. (In Russ.)]. https://www.elibrary.ru/item.asp?id=36766125

5. Kolomiyceva E.K., Manafova A.V. Sravnenie vnutrirotovyh cifrovyh skanerov v ortopedicheskoy stomatologii. V: SBORNIK TEZISOV 83-ey mezhregional'noy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem studencheskogo nauchnogo obschestva im. professora N. P. Pyatnickogo; Krasnodar; 27–28 aprelya 2022 goda. Krasnodar: Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe vysshego obrazovaniya «Kubanskiy gosudarstvennyy universitet» Ministerstva zdravoohraneniya Rossiyskoy Federacii; 2022. S. 821-823. [Kolomiitseva E.K., Manafova A.V. Comparison of intraoral digital scanners in prosthodontics. In: COLLECTION OF ABSTRACTS OF the 83rd interregional scientific and practical conference with international participation of the Student Scientific Society named after Professor N. P. Pyatnitsky; Krasnodar; April 27-28, 2022. Krasnodar: Federal State Budgetary Educational Institution of Higher Education "Kuban State University" of the Ministry of Health of the Russian Federation; 2022. P. 821-823. (In Russ.)].

6. Potekaev N.N., Dolya O.V., Frigo N.V., Atabieva A.Ya., Mayorova E.M. Iskusstvennyy intellekt v medicine. Obschie polozheniya. Filosofskie aspekty. Klinicheskaya dermatologiya i venerologiya. 2022;21(6):749‑756. [Potekaev N.N., Dolya O.V., Frigo N.V., Atabieva A.Y., Mayorova E.M. Artificial intelligence in healthcare: general considerations and philosophical aspects. Russian Journal of Clinical Dermatology and Venereology. 2022;21(6):749‑756. (In Russ.)]. https://doi.org/10.17116/klinderma202221061749

7. Simakova A.A., Gorbatova M.A., Rusanov D.S., Karyakin A.A., Grzhibovskiy A.M. Primenenie iskusstvennyh neyronnyh setey v praktike vracha-ortodonta: obzor rossiyskih issledovaniy za period 2013-2023. Vestnik novyh medicinskih tehnologiy. 2024;18(4):24-35. [Simakova A.A., Gorbatova M.A., Rusanov D.S., Karyakin A.A., Grzhibovsky A.M. Application of artificial neural networks in orthodontic practice: a review of russian studies for the period 2013-2023. Journal of New Medical Technologies. 2024;18(4):24-35. (In Russ.)]. https://www.elibrary.ru/item.asp?id=69158660

8. Stozharov P.A., Ermolaev G.A., Stozharova L.P., Vol'muradov E.V. Iskusstvennyy intellekt v stomatologii na primere programmy Diagnocat. V: Aktual'nye voprosy stomatologii: sbornik nauchnyh trudov, posvyaschennyy osnovatelyu kafedry ortopedicheskoy stomatologii KGMU, professoru Isaak Mihaylovichu Oksmanu; Kazan'; 13 marta 2024 goda. Kazan': Kazanskiy gosudarstvennyy medicinskiy universitet; 2024. S. 907-909. [Stozharov P.A., Ermolaev G.A., Stozharova L.P., Vol'muradov E.V. In: Topical issues of dentistry: a collection of scientific papers dedicated to the founder of the Department of Orthopedic Dentistry at KSMU, Professor Isaac Mikhailovich Oxman; Kazan; March 13, 2024. Kazan: Kazan State Medical University; 2024. P. 907-909. (In Russ.)]. https://www.elibrary.ru/item.asp?id=68643065

9. Timofeev D.E. Sovershenstvovanie deyatel'nosti stomatologicheskih ortopedicheskih otdeleniy, ispol'zuyuschih sovremennye tehnologii; dissertaciya na soiskanie uchenoy stepeni kandidata medicinskih nauk; 14.01.14; 14.02.03. Moskva; 2020. 192 s. [Timofeev D.E. Improving the activities of dental orthopedic departments using modern technologies; dissertation for the degree of Candidate of Medical Sciences; 14.01.14; 14.02.03. Moscow; 2020. 192 p. (In Russ.)].

10. Shaydurov A.S. Problema otvetstvennosti za deystviya avtonomnyh sistem iskusstvennogo intellekta v RF: yuridicheskie i eticheskie vyzovy. Vektor nauchnoy mysli. 2024;(6):507-509. [Shaidurov A.S. The problem of responsibility for the actions of autonomous artificial intelligence systems in the RF: legal and ethical challenges. Vektor naučnoj mysli. 2024;(6):507-509. (In Russ.)]. https://elibrary.ru/item.asp?id=69027624

11. Haddur Z.A. Iskusstvennyy intellekt i prava cheloveka: yuridicheskaya i eticheskaya otvetstvennost' za uscherb, prichinennyy tehnologiyami iskusstvennogo intellekta. Pravo i upravlenie. 2023;(3):18-23. [Khaddour Z.A. Artificial intelligence and human rights: legaland ethical liability for damage caused by artificial intelligence technologies. Law and management. 2023;(3):18-23. (In Russ.)]. https://www.elibrary.ru/item.asp?id=53950411

12. Alam M.K., Alfawzan A.A. Dental characteristics of different types of cleft and non-cleft individuals. Frontiers in cell and developmental biology. 2020;8:789. https://doi.org/10.3389/fcell.2020.00789 PMID:32984313

13. Aljulayfi I.S., Almatrafi A.H., Althubaitiy R.O., Alnafisah F., Alshehri K., Alzahrani B. et al. The Potential of Artificial Intelligence in Prosthodontics: A Comprehensive Review. Medical science monitor. 2024;30:e944310. https://doi.org/10.12659/MSM.944310

14. Alshadidi A.A.F., Alshahran A.A., Aldosari L.I.N., Chaturvedi S., Saini R.S., Hassan S.A.B. et al. Investigation on the Application of Artificial Intelligence in Prosthodontics. 2023;13(8):5004. https://doi.org/10.3390/app13085004

15. Arif S., Alam. M.T., Ansari A.H., Shaikh M.B.N., Siddiqui M.A. Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique. Materials Research Express. 2018;5(5):056506. https://doi.org/10.1088/2053-1591/aabec8

16. Elgarba B.M., Fontenele R.C., Mangano F., Jacobs R. Novel AI-based automated virtual implant placement: Artificial versus human intelligence. Journal of Dentistry. 2024;147:105146. https://doi.org/10.1016/j.jdent.2024.105146

17. Bernauer S.A., Zitzmann N.U., Joda T. The Use and Performance of Artificial Intelligence in Prosthodontics: A Systematic Review. Sensors. 2021;21(19):6628. https://doi.org/10.3390/s21196628

18. Bernauer S.A., Müller J., Zitzmann N.U., Joda T. Influence of Preparation Design, Marginal Gingiva Location, and Tooth Morphology on the Accuracy of Digital Impressions for Full-Crown Restorations: An In Vitro Investigation. Journal of clinical medicine. 2020;9(12):3984. https://doi.org/10.3390/jcm9123984

19. Chen Y., Du H., Yun Z., Yang S., Dai Z., Zhong L. et al. Automatic Segmentation of Individual Tooth in Dental CBCT Images From Tooth Surface Map by a Multi-Task FCN. IEEE Access. 2020;8:97296-97309. http://doi.org/10.1109/ACCESS.2020.2991799

20. Chen Z., Liu Y., Liu Y., Xie X., Deng F. Influence of bone density on the accuracy of artificial intelligence–guided implant surgery: An in vitro study. Journal of Prosthetic Dentistry. 2024;131(2):254-261. https://linkinghub.elsevier.com/retrieve/pii/S0022391321004145

21. Cheng C., Cheng X., Dai N., Tang T., Xu Z., Cai J. Facial morphology prediction after complete denture restoration based on principal component analysis. Journal of Oral Biology and Craniofacial Research. 2019;9(3):241-250. https://doi.org/10.1016/j.jobcr.2019.06.002.

22. Choi J., Ahn J., Park J.M. Deep learning-based automated detection of the dental crown finish line: An accuracy study. The Journal of prosthetic dentistry. 2024;132(6):1286.e1-1286.e9. https://doi.org/10.1016/j.prosdent.2023.11.018

23. Currie G. Intelligent imaging: Anatomy of machine learning and deep learning. Journal of nuclear medicine technology. 2019;47(4):273-281. https://doi.org/10.2967/jnmt.119.232470

24. Deniz S.T., Ozkan P., Ozkan G. The accuracy of the prediction models for surface roughness and micro hardness of denture teeth. Dental Materials Journal. 2019;38(6):1012-1018. https://doi.org/10.4012/dmj.2018-014

25. Ding H., Wu J., Zhao W., Matinlinna J.P., Burrow M.F., Tsoi J.K.H. Artificial intelligence in dentistry. Frontiers in Dental Medicine. 2023;4:1085251. https://doi.org/10.3389/fdmed.2023.1085251

26. Ali I.E., Sumita Y., Wakabayashi N. Advancing maxillofacial prosthodontics by using pre-trained convolutional neural networks: Image-based classification of the maxilla. Journal of prosthodontics. 2024;33(7):645-654. https://doi.org/10.1111/jopr.13853

27. Róth I., Géczi Z., Végh D.C., Hegedüs T., Pál A., Hermann P. et al. The role of artificial intelligence in intraoral scanning for complete-arch digital impressions: An in vitro study. Journal of Dentistry. 2025;156:105717. https://doi.org/10.1016/j.jdent.2025.105717

28. Gemeda B.A., Sinha D.K., Mengesha G.A., Gautam S.S. Optimization of porosity behavior of hybrid reinforced titanium metal matrix composite through RSM, ANN, and GA for multi-objective parameters. Journal of Engineering and Applied Science. 2024;71:116. https://doi.org/10.1186/s44147-024-00436-4

29. Jurek J., Wójtowicz W., Wójtowicz A. Syntactic pattern recognition-based diagnostics of fetal palates. Pattern Recognition Letters. 2020;133:144-150. http://dx.doi.org/10.1016/j.patrec.2020.02.023

30. Joda T., Gallucci G., Wismeijer D., Zitzmann N. Augmented and virtual reality in dental medicine: A systematic review. Computers in biology and medicine. 2019;108:93-100. https://doi.org/10.1016/j.compbiomed.2019.03.012

31. Lee J.H., Kim H.K. A comparative study of shade-matching performance using intraoral scanner, spectrophotometer, and visual assessment. Scientific Reports. 2024;14(1):23640. https://doi.org/10.1038/s41598-024-74354-z

32. Kong H.J., Kim Y.L. Application of artificial intelligence in dental crown prosthesis: a scoping review. BMC Oral Health. 2024;24(1):937. https://doi.org/10.1186/s12903-024-04657-0

33. Nagata K., Inoue E., Nakashizu T., Seimiya K., Atsumi M., Kimoto K. et al. Verification of the accuracy and design time of crowns designed with artificial intelligence. The Journal of Advanced Prosthodontics. 2025;17(1):1-10. https://doi.org/10.4047/jap.2025.17.1.1

34. Lee J.H., Jeong S.N. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study. Medicine. 2020;99(26):e20787. https://doi.org/10.1097/MD.0000000000020787

35. Lee J.H., Kim D.H., Jeong S.N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral diseases. 2020;26(1):152-158. https://doi.org/10.1111/odi.13223

36. Lerner H., Mouhyi J., Admakin O., Mangano F. Artificial intelligence in fixed implant prosthodontics: A retrospective study of 106 implant-supported monolithic zirconia crowns inserted in the posterior jaws of 90 patients. BMC Oral Health. 2020;20(1):80. https://doi.org/10.1186/s12903-020-1062-4

37. Macrì M., D’Albis V., D’Albis G., Forte M., Capodiferro S., Favia G. et al. The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review. Bioengineering. 2024;11(8):778. https://doi.org/10.3390/bioengineering11080778

38. Mai H.N., Han J.S., Kim H.S., Park Y.S., Park J.M., Lee D.H. Reliability of automatic finish line detection for tooth preparation in dental computer-aided software. Journal of prosthodontic research. 2023;67(1):138-143. https://doi.org/10.2186/jpr.JPR_D_21_00344

39. Mangano F., Gandolfi A., Luongo G., Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17(1):149. https://doi.org/10.1186/s12903-017-0442-x

40. Machado R.A., de Oliveira Silva C., Martelli-Junior H., das Neves L.T., Coletta R.D. Machine learning in prediction of genetic risk of nonsyndromic oral clefts in the Brazilian population. Clinical oral investigations. 2021;25(3):1273-1280 https://doi.org/10.1007/s00784-020-03433-y

41. Oh K.C., Park J.M., Moon H.S. Effects of Scanning Strategy and Scanner Type on the Accuracy of Intraoral Scans: A New Approach for Assessing the Accuracy of Scanned Data. Journal of prosthodontics. 2020;29(6):518-523. https://doi.org/10.1111/jopr.13158

42. Revilla-León M., Gómez-Polo M., Vyas S., Barmak A.B., Özcan M., Att W. et al. Artificial intelligence applications in restorative dentistry: A systematic review. The Journal of prosthetic dentistry. 2022;128(5):867-875. https://doi.org/10.1016/j.prosdent.2021.02.010

43. Sakai T., Li H., Shimada T., Kita S., Iida M., Lee C. et al. Development of artificial intelligence model for supporting implant drilling protocol decision making. Journal of prosthodontic research. 2023;67(3):360-365. https://doi.org/10.2186/jpr.JPR_D_22_00053

44. Saravi B., Vollmer A., Hartmann M., Lang G., Kohal R.-J., Boeker M. et al. Clinical performance of CAD/CAM All-ceramic tooth-supported fixed dental prostheses: A systematic review and meta-analysis. Materials (Basel). 2021;14(10):2672. https://doi.org/10.3390/ma14102672

45. Sawangsri K., Bekkali M., Lutz N., Alrashed S., Hsieh Y.L. et al. Acceptability and deviation of finish line detection and restoration contour design in single-unit crown: Comparative evaluation between 2 AI-based CAD software programs and dental laboratory technicians. The Journal of prosthetic dentistry. 2025:S0022-3913(25)00286-0. https://doi.org/10.1016/j.prosdent.2025.03.037

46. Schiebl J., Bauer F.X., Grill F., Loeffelbein D.J. RapidNAM: algorithm for the semi-automated generation of nasoalveolar molding device designs for the presurgical treatment of bilateral cleft lip and palate. IEEE transactions on bio-medical engineering. 2020;67(5):1263-1271. https://doi.org/10.1109/tbme.2019.2934907

47. Singh J., Singh S., Verma A. Artificial intelligence in use of ZrO2 material in biomedical science. Journal of Electrochemical Science and Engineering. 2025;13(1):83-97. https://doi.org/10.5599/jese.1498

48. Shafi N., Bukhari F., Iqbal W., Almustafa K.M., Asif M., Nawaz Z. Cleft prediction before birth using deep neural network. Health informatics journal. 2020;26(4):2568-2585. https://doi.org/10.1177/1460458220911789

49. Takahashi T., Nozaki K., Gonda T., Ikebe K. A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous arches using a convolutional neural network. Journal of Prosthodontic Research. 2021;65(1):115-118. https://doi.org/10.2186/jpr.JPOR_2019_354

50. Wang X., Alqahtani K.A., Van den Bogaert T., Shujaat S., Jacobs R., Shaheen E. Convolutional neural network for automated tooth segmentation on intraoral scans. BMC Oral Health. 2024;24(1):804. https://doi.org/10.1186/s12903-024-04582-2

51. Yuan F., Cheng C., Dai N., Sun Y. Prediction of aesthetic reconstruction effects in edentulous patients. Scientific reports. 2017;7(1):18077. https://doi.org/10.1038/s41598-017-17065-y

52. Mine Y., Suzuki S., Eguchi T., Murayama T. Applying deep artificial neural network approach to maxillofacial prostheses coloration. Journal of Prosthodontic Research. 2020;64(3):296-300. https://doi.org/10.1016/j.jpor.2019.08.006

53. Zhang S.J., Meng P., Zhang J., Jia P., Lin J., Wang X. et al. Machine learning models for genetic risk assessment of infants with non-syndromic orofacial cleft. Genom Proteom Bioinformat. 2018;16(5):354-364. https://doi.org/10.1016/j.gpb.2018.07.005

54. Chen Z., Liu Y., Liu Y., Xie X., Deng F. Influence of bone density on the accuracy of artificial intelligence–guided implant surgery: An in vitro study. Journal of Prosthetic Dentistry. 2024;131(2):254-261. https://linkinghub.elsevier.com/retrieve/pii/S0022391321004145


Login or Create
* Forgot password?