employee
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
employee
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
employee
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
employee
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
UDC 616.31
Introduction. The development of adhesive dentistry has significantly transformed clinical practice, enabling high levels of bond strength between restorative materials and dental tissues. Fourth-generation adhesive systems remain especially relevant, having established themselves as a reliable standard due to their high bond strength and minimal marginal microleakage. In the context of restricted imports, there is an increasing need for objective evaluation of domestic alternatives to foreign materials. The domestic adhesive system is positioned as a competitive alternative to foreign counterparts; however, comparative data on its chemical interaction with ceramic materials remain insufficient. Therefore, studies based on Electron Probe X-ray Microanalysis (EPMA) are particularly valuable for assessing the formation of interfacial bonds. Aim. A comparative study of the elemental composition in the adhesive interface zone between domestic and foreign adhesive systems with ceramic restorations using X-ray microprobe analysis (EPMA) to identify the specific features of chemical interactions at the material interface and to assess the effectiveness of adhesive bond formation. Materials and Methods. A comparative in vitro study was conducted to assess the adhesive interface of two-component fourth-generation adhesive systems produced by domestic and foreign manufacturers with lithium disilicate ceramics. The surfaces of the ceramic specimens were etched, followed by the application of an adhesive layer, polymerization, and subsequent incremental placement of a light-cured nanohybrid composite material. The microstructure of the adhesive interface zones was examined using a scanning electron microscope JSM-IT300LV (JEOL, Japan). The elemental composition and distribution of components within the adhesive interface were determined by Electron Probe X-ray Microanalysis (EPMA) using an X-MaxN 20 detector (Oxford Instruments). Results. The laboratory study demonstrated the high performance of the domestic adhesive system. The domestic system exhibited comparable characteristics to the foreign material, confirming reliable infiltration and adhesion to the ceramic surface. These findings indicate its potential as a competitive alternative to imported adhesive systems.
adhesive systems, adhesion, ceramic restorations, adhesive bond, energy-dispersive X-ray microanalysis, elemental composition, scanning electron microscopy, dental materials, import substitution in dentistry
1. Subramani K., Ahmed W., Hartsfield J.K. eds. Nanobiomaterials in Clinical Dentistry. Waltham: William Andrew Publishing; 2013. 519 p. https://doi.org/10.1016/C2012-0-01361-0
2. Sruthi Y.S.S., Rao B.L., Chakradhar V., Sravanthi T.L.G., Parvathi P.S.H.L. Long way of adhesives in prosthodontics. Indian Journal Of Applied Research. 2020;10(8):79-81. https://doi.org/10.36106/ijar/9309124
3. Bourgi R., Kharouf N., Cuevas Suárez C., Łukomska-Szymańska M., Haikel Y., Hardan L. A literature review of adhesive systems in dentistry: key components and their clinical applications. Applied Sciences. 2024;14(18):8111. https://doi.org/10.3390/app14188111.
4. Borisenko L.G., Reder A.S. Sravnitel'nyy analiz i effektivnost' adgezivnyh sistem razlichnyh pokoleniy. Metody adgezivnoy podgotovki zubov: uchebno-metodicheskoe posobie. Minsk: BGMU; 2023. 43 s. [Borisenko L.G., Reder A.S. Comparative analysis and effectiveness of adhesive systems of different generations. Methods of adhesive preparation of teeth: an educational and methodical manual. Minsk: BSMU; 2023. 43 p. (In Russ.)]. https://rep.bsmu.by/bitstream/handle/BSMU/37731/978-985-21-1268-0.pdf?sequence=1&isAllowed=y
5. Zhao Z., Wang Q., Zhao J., Zhao B., Ma Z., Zhang C. Adhesion of teeth. Frontiers in Materials. 2021;7:615225. https://doi.org/10.3389/fmats.2020.615225.
6. Robakidze N.S., Zhidkih E.D., Zayceva A.G. Sovremennye koncepcii adgezivnoy stomatologii. Institut stomatologii. 2021;(3):76-79. [Robakidze N.S., Zhidkikh E.D., Zaitseva A.G. Modern concepts of adhesive dentistry. The Dental Institute. 2021;(3):76-79. (In Russ.)]. https://www.elibrary.ru/item.asp?id=46652207
7. Călinoiu Ș.G., Bîcleșanu C., Florescu A., Stoia D.I., Dumitru C., Miculescu M. Comparative study on interface fracture of 4th generation 3-steps adhesive and 7th generation universal adhesive. Materials. 2023;16(17):5834. https://doi.org/10.3390/ma16175834
8. Shestakova S.P. Importozameschenie v otechestvennoy stomatologii: dostizheniya, perspektivy, problemy i puti ih resheniya. V: Ctudencheskaya nauka: aktual'nye voprosy, dostizheniya i innovacii: sbornik statey V Mezhdunarodnoy nauchno-prakticheskoy konferencii; Penza; 12 dekabrya 2021 goda. Penza: Nauka i Prosveschenie; 2021. S. 304-309. [Shestakova S.P. Import substitution in domestic dentistry: achievements, prospects, problems and ways to solve them. In: Student science: current issues, achievements and innovations: collection of articles of the V International Scientific and Practical Conference; Penza; December 12, 2021. Penza: Science and Education; 2021. pp. 304-309. (In Russ.)]. https://www.elibrary.ru/item.asp?id=47355830
9. Parshoev A.Sh., Parshoeva L.Sh. Importozameschenie stomatologicheskih materialov v usloviyah sankciy. Tribuna uchenogo. 2022;(6):339-344. [Parshoev A.Sh., Parshoeva L.Sh. Import substitution of dental materials under sanctions. Tribuna učënogo. 2022;(6):339-344. (In Russ.)]. https://elibrary.ru/item.asp?id=49167272
10. Permyakova A.V. Nikolaev A.I. Issledovanie prochnostnyh harakteristik kompozitnogo restavracionnogo materiala rossiyskogo proizvodstva. Prikladnye informacionnye aspekty mediciny. 2020;23(2):64-69. [Permyakova A.V., Nikolaev A.I. Research of strength characteristics of composite restoration material of russian production. Applied Information Aspects of Medicine. 2020;23(2):64-69. (In Russ.)]. https://www.elibrary.ru/item.asp?id=43844624
11. Enuh B.M. Why is the Elemental Analysis of Dental Materials Important? AZoM. 12.01.2023. Available from: https://www.azom.com/article.aspx?ArticleID=22328
12. Demin Ya.D. Kliniko-eksperimental'noe obosnovanie optimizacii protokola adgezivnoy fiksacii pri protezirovanii keramicheskimi konstrukciyami; dissertaciya na soiskanie uchenoy stepeni kandidata medicinskih nauk. Nizhniy Novgorod; 2019. 158 s. [Demin Ya.D. Clinical and experimental substantiation of the optimization of the protocol of adhesive fixation in prosthetics with ceramic structures; dissertation for the degree of candidate of medical sciences. Nizhny Novgorod; 2019. 158 p. (In Russ.)]. https://www.dissercat.com/content/kliniko-eksperimentalnoe-obosnovanie-optimizatsii-protokola-adgezivnoi-fiksatsii-pri-protezi
13. Buser R., Dönmez M.B., Hoffmann M., Hampe R., Stawarczyk B. Fatigue behavior and reliability of pressed lithium disilicate ceramics compared to 5Y-TZP zirconia under different loading protocols. Dental Materials. 2025;41(2):134-140. https://doi.org/10.1016/j.dental.2024.11.005
14. Lubauer J., Belli R., Peterlik H., Hurle K., Lohbauer U. Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics. Dental materials. 2022;38(2):318-332. https://doi.org/10.1016/j.dental.2021.12.013
15. Stawarczyk B., Mandl A., Liebermann A. Modern CAD/CAM silicate ceramics, their translucency level and impact of hydrothermal aging on translucency, Martens hardness, biaxial flexural strength and their reliability. JJournal of the mechanical behavior of biomedical materials. 2021;118:104456. https://doi.org/10.1016/j.jmbbm.2021.104456
16. Montazerian M., Baino .F, Fiume E., Migneco C., Alaghmandfard A., Sedighi O. et al. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. Progress in Materials Science. 2023;132:101023. https://doi.org/10.1016/j.pmatsci.2022.101023
17. Alves M.F.R.P., Ferrandez-Montero A., Ferrari B., Fernandes M.H.F.V., Olhero S.M., Sanchez-Herencia A.J. Manufacturing of lithium disilicate glass-ceramics by Vat-photopolymerization of water-based photocurable suspensions. Open Ceramics. 2025;21:100742. https://doi.org/10.1016/j.oceram.2025.100742.
18. Palla E-S., Kontonasaki E., Kantiranis N., Papadopoulou L., Zorba T., Paraskevopoulos K.M. et al. Color stability of lithium disilicate ceramics after aging and immersion in common beverages. The Journal of prosthetic dentistry. 2018;119(4):632-642. https://doi.org/10.1016/j.prosdent.2017.04.031
19. Honma T., Maeda K., Nakane S., Shinozaki K. Unique properties and potential of glass-ceramics. Journal of the Ceramic Society of Japan. 2022;130(8):545-551. https://doi.org/10.2109/jcersj2.22037
20. Kuznecova E.D. Primenenie sovremennyh adgezivnyh sistem v klinicheskoy stomatologii. Molodoy uchenyy. 2019;(44):143-147. [Kuznetsova E.D. Application of modern adhesive systems in clinical dentistry. Young scientist. 2019;(44):143-147. (In Russ.)]. https://moluch.ru/archive/282/63559/
21. Urukov N.Yu., Yakovleva M.V., Nazarov A.V. Primenenie sovremennyh adgezivnyh sistem i ih rol' v klinicheskoy stomatologii. Zdravoohranenie Chuvashii. 2022;(4):83-91. [Urukov N.Yu., Yakovleva M.V., Nazarov A.V. The use of modern adhesive systems and their role in clinical dentistry. Healthcare of Chuvashia. 2022;(4):83-91. (In Russ.)]. https://elibrary.ru/item.asp?id=50050357



