КЛИНИКО-ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ ВЫБОРА ЗУБНЫХ ПАСТ НА ОСНОВАНИИ МОНИТОРИНГА СОСТАВА РОТОВОЙ ЖИДКОСТИ У ЖИТЕЛЕЙ ЭКОЛОГИЧЕСКИ НЕБЛАГОПРИЯТНЫХ РАЙОНОВ
Аннотация и ключевые слова
Аннотация (русский):
Жители экологически неблагоприятных районов находятся под влиянием техногенных факторов. Вредные химические вещества поступают в организм из воздуха, питьевой воды, продуктов питания и обнаруживаются в ротовой жидкости, твердых тканях зуба, зубных отложениях, биоптатах тканевых структур и способствуют развитию кариеса и воспалительных заболеваний пародонта. Для профилактики основных стоматологических заболеваний применяются зубные пасты и ополаскиватели. В составе зубных паст содержатся различные абразивы: диоксид кремния, карбонат кальция, диоксид титана, гидрокарбонат кальция, гидроксиапатит, которые могут выступать в роли адсорбентов соединений тяжелых металлов. Биомониторинг с использованием метода масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС) позволяет определять микроколичество металлов в ротовой жидкости. Исследование средств индивидуальной гигиены полости рта показали, что зубные пасты и ополаскиватели, применяемые пациентами для профилактики и лечения воспалительных заболеваний пародонта, имеют адсорбционную активность в отношении ионов металлов. В статье проведена оценка адсорбционной эффективности лечебно-профилактической зубной пасты относительно ионов металлов (хрома, марганца, кадмия, свинца и др.) в ротовой жидкости у жителей экологически неблагоприятных районов. Применение адсорбционно эффективной зубной пасты, содержащей оксиды кремния и титана, дважды в день на протяжении двух недель показало достоверное снижение концентрации ионов марганца, хрома, мышьяка, свинца и кадмия в смешанной слюне жителей, которые находятся под влиянием неблагоприятных экологических факторов. Современный метод ИСП-МС целесообразно использовать для высокоточного мониторинга ионного состава ротовой жидкости пациентов, проживающих в экологически неблагоприятных районах.

Ключевые слова:
зубная паста, ополаскиватель для полости рта, адсорбционная эффективность, мониторинг, оксид кремния
Текст
Текст произведения (PDF): Читать Скачать

Introduction

The incidence and prevalence of dental diseases, such as dental caries and inflammatory periodontal disease are higher in people who are in direct contact with the factors of the industrial environment [1, 2, 6, 7, 13, 19, 20, 25], this indicates the need to improve the system of dental prevention. The inhabitants of industrial cities are also influenced by anthropogenic environmental factors, such as air containing heavy metal ions (lead, cadmium, chromium, arsenic, etc.). Harmful chemicals enter the body from the air, drinking water, food and are found in the oral fluid (OF), hard tooth tissues, dental deposits, biopsy of tissue structures and contribute to the development of caries and inflammatory periodontal diseases [1, 2, 6, 8, 9, 11, 13, 14]. Biomonitoring using inductively coupled plasma mass spectrometry (ICP-MS) allows to determine the micro-quantities of metals in blood, urine, human milk, hair and OF [8―12, 14―18, 21―24]. Monitoring data are used to adjust nutrition, to develop methods of treatment and prevention of diseases associated with the failure of metal-ligand homeostasis [8, 9, 16, 17]. Toothpastes (TP) and mouthwashes are used for prevention of major dental diseases [3―5, 7]. The toothpastes contain a variety of abrasives: silicon dioxide, calcium carbonate, titanium dioxide, calcium bicarbonate, hydroxyapatite, which can act as adsorbents of heavy metal compounds [6, 7]. The problem of choosing the oral hygiene products is relevant in the presence of heavy metal ions in the OF.

The purpose of research is ― to determine the effect of oral hygiene products on the variation in the concentration of heavy metal ions in the oral fluid in the inhabitants of industrial cities according to the results of monitoring.

                        Materials and methods of research

                        Clinical studies were conducted at the Department of Therapeutic Dentistry of the Ural State Medial University and included the analysis of complaints and medical history, visual examination, index assessment of oral hygiene (OHI - S, J. R. Green, J.R. Vermillion, 1969), hard tooth tissues (DMFT), periodontal tissues (PBI, Muhllemann, Saxer, 1965). The clinical study involved 27 somatically safe men, inhabitants of the industrialized city, aged 20 to 23 years, who signed a voluntary informed consent to participate in the study (mean age 21.40±1.59). The OF sampling was carried out in the morning, in the fasted state. Patients were trained in the rules of oral care, provided with medium toothbrushes, TP and mouthwash which are adsorption-effective against heavy metal ions [8, 9]; they brushed their teeth twice a day for two weeks. The laboratory measurements were carried out at the Institute of Geology and Geochemistry of UB RAS (Shared knowledge center "Geoanalyst", supported by the grant of the President of the Russian Federation for State support of leading schools of thought in the Russian Federation NSH-9723.2016.5). Using the method of ICP-MS according to NSAM № 480 - X, 46 elements were defined in the composition of the OF: manganese, arsenic, cadmium, lead, chromium. All laboratory measurements were carried out in the mode of quantitative analysis with plotting the calibration curves using multi-element standard solutions Perkin Elmer Instruments, 99,998 % argon [8, 9].

Statistical processing of the results was carried out using the application package MS Excel, Vortex 7.0. To compare the data, student's t-test was used; the confidence level was p ≤0,05 [3―6, 8].

Results

According to the clinical examination, the average DMFT was 8,83±2,07. As a result, the use of the suggested oral hygiene products contributed to the improvement of hygiene (reduction of OHI-S level by 52,0±3,5 %; p<0,05) and to the reduction of the degree of inflammation of periodontal tissues (reduction of PBI index by 58,2±10,1 %; p<0,05). As a result of the analysis of the OF ion composition, the increased value of chromium content was determined in 18,52 % of cases, manganese in 22,22 % of cases, arsenic in 7,40 % of cases, cadmium in 22,22 % of cases, lead in 11,11 % of cases. Moreover, 6 persons showed an increased concentration of one metal, and 1 person had an increased concentration of two metals, and in 4 persons there was an increased concentration of three or four metals.

As a result, all patients significantly decreased the content of manganese, arsenic, lead and cadmium in the oral fluid, p<0,05 (table 1).

 

Table  The examples of variations in the content of metal ions in the OF before and after (2―5 weeks after) the use of adsorption-effective oral hygiene products

Element

 

1.1

1.2

1.3

1.4

1.5

Element

 

2.1

2.2

2.3

2.4

Mn

μg /l

125.84

11.99

70.69

75.25

10.07

Cd

μg /l

4.19

0.3

<0.1

<0.1

 

 

2.1

2.2

2.3

2.4

 

 

 

3.3

3.1

3.2

 

Pb

μg /l

32.99

0.68

1.01

<0.2

 

 

μg /l

7.81

<0.1

<0.1

 

 

 

3.1

3.2

3.3

 

 

 

 

6.1

6.2

6.3

6.4

Mn

μg /l

296.46

82.89

53.32

 

 

 

μg /l

1.45

0.31

<0.1

<0.1

Pb

 

156.03

4.16

12.12

 

 

 

 

7.1

7.2

7.3

 

 

 

4.1

4.2

4.3

 

 

 

μg /l

<0.1

4.58

2.99

 

Mn

μg /l

281.98

126.44

72.6

 

 

 

 

8.1

8.2

8.3

 

 

 

5.1

5.2

5.3

 

 

 

μg /l

9.1

2.21

<0.1

 

Mn

μg /l

45.87

115.22

57.07

 

 

As

μg /l

46.7

36.55

5.08

 

 

 

8.1

8.2

8.3

 

 

 

 

 

 

 

 

Pb

μg /l

240.79

41.42

6.94

 

 

 

 

 

 

 

 

 

 

9.1

9.2

9.3

9.4

 

 

 

 

 

 

 

Mn

μg /l

280.23

28.87

70.24

60.53

 

 

 

 

 

 

 

The monitoring of the OF ion composition in the industrial areas allows us to personalize the approach when choosing the oral hygiene products which are adsorption-efficient relative to heavy metal ions present in mixed saliva, Reducing the level of contamination of the OF with heavy metal ions will increase the effectiveness of prevention and treatment of major dental diseases (dental caries and inflammatory periodontal diseases), due to the lack of additional negative effects of ecotoxicants on the organs and tissues of the oral cavity,

Conclusion

  1. The modern method of ISP-MS is advisable to use for high-precision monitoring of the OF ion composition in patients living in the industrial areas,
  2. When choosing the oral hygiene products for inhabitants of the industrial areas, a personalized approach should be used on the basis of the analysis of the OF ion composition, followed by monitoring of their effectiveness,
  3. When using a toothpaste containing silicon and titanium oxides, the concentration of manganese, chromium, arsenic, lead and cadmium ions in the OF decreases within 2 weeks.

ICP-MS studies are carried out in the UB RAS Geoanalytic Center for Collective Use and supported by АААА-А18-118053090045-8 topic of IGG UB RAS State Assignment.

Список литературы

1. Агафонов А.А., Блашкова С.Л., Даутов Ф.Ф. Факторы риска для здоровья работников цехов тепловой электростанции // Фундаментальные исследования. — 2012. — № 12-2. — C. 215 - 218.

2. Адриановский В.И. Канцерогенная опасность и алиментарные пути ее снижения при огневом рафинировании меди: автореф. дис. канд.мед. наук / Уральский государственный е\медицинский университет.- Екатеринбург, 2000.- 26с.

3. Еловикова Т. М., Белоконова Н.А., Молвинских В.С. Инновации консервативной пародонтологии: аспекты гигиенической фазы лечения воспалительных заболеваний пародонта. - IV Всероссийское рабочее совещание по проблемам фундаментальной стоматологии. Международный конгресс «Стоматология Большого Урала». Сборник статей. Под редакцией д.м.н. Мандра Ю.В. — Екатеринбург: Издательство УГМУ, 2016. –с.191-194.

4. Еловикова Т.М., Молвинских В.С., Ермишина Е.Ю. Анализ влияния лечебно-профилактической зубной пасты с экстрактами трав на состояние полости рта у пациентов с гингивитом // Проблемы стоматологии. 2015.- №2. С.5-9.

5. Еловикова Т.М., Ермишина Е.Ю., Михейкина Н.И. Механизмы восстановительного действия новой лечебно-профилактической зубной пасты // Стоматология. 2016. - Т. 95.-№ 5. - с. 32-35.

6. Кабирова М.Ф. Программа лечения и профилактики стоматологических заболеваний у рабочих нефтехимического производства // Вестник РУДН. Серия: Медицина. – 2009. - №4.-. С. 484-486

7. Лесков А.С. Влияние химических факторов на интенсивность и распространенность кариеса зубов // Институт стоматологии. — 2012. — № 1(54). — С. 31 – 32

8. Burguera J.L., Burguera M. Recent on-line processing procedures for biological samples for determination of trace elements by atomic spectrometric methods. / Spectrochimica Acta, Part B.- 64 (2009), - P. 451–458.

9. Fernando Gila, Antonio F. Hernándeza, Claudia Márquez, Pedro Femiac, Pablo Olmedoa, Olga López-Guarnido, Antonio Pla. F. Gil et al. Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. / Science of the Total Environment 409 (2011), Р. 1172–1180

10. Karina Krzciuk. Intelligent Analysis of Samples by Semiquantitative Inductively Coupled Plasma Mass Spectrometry (ICP–MS) Technique: A Review. // Critical Reviews in Analytical Chemistry 46 (2016), pp. 284–290.

11. Yaprak E., Yolcubal I., Sinanoğlu A., Doğrul-Demiray A., Guzeldemir-Akcakanat E., Marakoğlu I. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study. // Journal of Periodontal Research 52 (2016), pp. 83–88.

12. Yan Y., Han B., Zeng J., Zhou W., Zhang T., Zhang J., Chen W., Zhang C. A candidate reference method for serum potassium measurement by inductively coupled plasma mass spectrometry. // Clinical Chemistry and Laboratory Medicine 55 (2017), pp. 1517–1522.

13. Martín-Cameán A., Jos A, Calleja A, Gil F, Iglesias A, Solano E, Cameán A.M. Validation of a method to quantify titanium, vanadium and zirconium in oral mucosa cells by inductively coupled plasma-mass spectrometry (ICP-MS). // Talanta 118 (2014), pp. 238–244.

14. Mohr V., Miró M., Limbeck A. On-line dynamic extraction system hyphenated to inductively coupled plasma optical emission spectrometry for automatic determination of oral bioaccessible trace metal fractions in airborne particulate matter. // Analytical and Bioanalytical Chemistry 409 (2017), pp. 2747–2756.

15. Deng Z., Yang Z., Ma X., Tian X., Bi L., Guo B., Wen W., et al. Urinary metal and metalloid biomarker study of Henoch-Schonlein purpura nephritis using inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry. // Talanta 178 (2018), pp. 728–735. *

16. Han B., Ge M., Zhao H., Yan Y., Zeng J., Zhang T., Zhou W., et al. Determination of serum calcium levels by 42Ca isotope dilution inductively coupled plasma mass spectrometry. // Clinical Chemistry and Laboratory Medicine 56 (2017), pp. 51–58.

17. Drobyshev E.J., Solovyev N.D., Ivanenko N.B., Kombarova M.Y., Ganeev A.A. Trace element biomonitoring in hair of school children from a polluted area by sector field inductively coupled plasma mass spectrometry. // Journal of Trace Elements in Medicine and Biology 37 (2017), pp. 14–20.

18. Fernández-Menéndez S., Fernández-Sánchez M.L., Fernández-Colomer B., de la Flor St Remy R.R., Cotallo G.D., Freire A.S., Braz B.F., et al. Total zinc quantification by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography-inductively coupled plasma-mass spectrometry in human milk and commercial formulas: Importance in infant nutrition. // Journal of Chromatography A 1428 (2016), pp. 246–254.

19. Morton J., Tan E., Suvarna S.K. Multi-elemental analysis of human lung samples using inductively coupled plasma mass spectrometry. // Journal of Trace Elements in Medicine and Biology 43 (2017), pp. 63–71.

20. Herman M., Golasik M,, Piekoszewski W., Walas S., Napierala M., Wyganowska-Swiatkowska M., Kurhanska-Flisykowska A., et al. Essential and Toxic Metals in Oral Fluid-a Potential Role in the Diagnosis of Periodontal Diseases. // Biological Trace Element Research 173 (2016), pp. 275–282.

21. Yan Y, Zhang C, Zhang J, Zhang T, Zhou W, Zeng J, Chen W. Measurement of Serum Sodium and Magnesium by Inductively Coupled Plasma Mass Spectrometry with Aluminum as Internal Standard // Clinical Laboratory 62 (2016), pp. 719–725.

22. Maoyong He, Hai Lu, Chongguang L., Tongxiang R. Determining trace metal elements in the tooth enamel from Hui and Han Ethnic groups in China using microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS). // Microchemical Journal 127 (2016), pp. 142–144.

23. Cieslak W., Pap K., Bunch D.R., Reineks E., Jackson R., Steinle R., Wang S. Highly sensitive measurement of whole blood chromium by inductively coupled plasma mass spectrometry. // Clinical Biochemistry 46 (2013), pp. 266–270.

24. Lingott J., Lindner U., Telgmann L., Esteban-Fernández D., Jakubowski N., Panne U. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry. // Environmental Science: Processes & Impacts 18 (2016), pp. 200–207.

25. Sun X., Bernabé E., Liu X., Gallagher J.E., Zheng S. Do contextual factors have a role in periodontal disease? // Journal of Clinical Periodontology 44 (2016), pp. 13–21.


Войти или Создать
* Забыли пароль?